Abstract

In high average power multi-pass amplifier systems, Pockels cell, used for isolating and controlling number of passes, encounters both limitation of aperture and thermo-effects. We propose and demonstrate for the first time, as far as we know, a reflecting Pockels cell (RPC) which is longitudinally excited based on KD*P utilizing matched a discharge chamber and a copper plate as electrodes. In the RPC, electro-optic crystal can be longitudinally conduction-cooled. This device, with a 40mm × 40mm clear aperture, can be scaled to larger, and driven by one low voltage pulse. Excellent switching efficiency, high static extinction ratio, and negligible thermo-effects have been achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Caird, A. Bayramian, et al., “Mercury: A high repetition rate laser for high energy density physics, ” 29th European Conference on Laser Interaction with Matter, Madrid, Spain, UCRL-PRES-221983 (2006).
  2. S. Z. Kurtev, O. E. Denchev, and S. D. Savov, “Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation,” Appl. Opt. 32(3), 278 (1993).
    [CrossRef] [PubMed]
  3. L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
    [CrossRef]
  4. J. Goldhar and M. A. Henesian, “Electro-optical switches with plasma electrodes,” Opt. Lett. 9(3), 73–75 (1984).
    [CrossRef] [PubMed]
  5. G. Gardelle and E. Pasini, “A simple operation of a plasma electrode Pockels cell for the laser Megajouls,” J. Appl. Phys. 91(5), 2631–2636 (2002).
    [CrossRef]
  6. B. E. Kruschwitz, J. H. Kelly, M. J. Shoup Iii, L. J. Waxer, E. C. Cost, E. T. Green, Z. M. Hoyt, J. Taniguchi, and T. W. Walker, “High-contrast plasma-electrode Pockels cell,” Appl. Opt. 46(8), 1326–1332 (2007).
    [CrossRef] [PubMed]
  7. X. Zhou, G. Wenqiong, Z. Xiongjun, S. Zhan, and W. Dengsheng, “One-dimensional model of a plasma-electrode optical switch driven by one-pulse process,” Opt. Express 14(7), 2880–2887 (2006).
    [CrossRef] [PubMed]
  8. X. Zhang, D. Wu, J. Zhang, H. Yu, J. Zheng, D. Cao, and M. Li, “One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application,” Opt. Express 17(19), 17164–17169 (2009).
    [CrossRef] [PubMed]
  9. S. Tokita, J. Kawanaka, and Y. Izawa, “Sapphire cooling at both faces of high-power cryogenic Yb:YAG disk laser,” 2nd International Workshop on High Energy Class Diode Pumped Solid State Lasers, Jena, Germany, 10–12 June (2005).
  10. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
    [CrossRef]

2009

2007

2006

2002

G. Gardelle and E. Pasini, “A simple operation of a plasma electrode Pockels cell for the laser Megajouls,” J. Appl. Phys. 91(5), 2631–2636 (2002).
[CrossRef]

1993

1990

L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
[CrossRef]

1987

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

1984

Cao, D.

Cost, E. C.

Denchev, O. E.

Dengsheng, W.

Eimerl, D.

L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
[CrossRef]

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

Gardelle, G.

G. Gardelle and E. Pasini, “A simple operation of a plasma electrode Pockels cell for the laser Megajouls,” J. Appl. Phys. 91(5), 2631–2636 (2002).
[CrossRef]

Goldhar, J.

Green, E. T.

Henesian, M. A.

Hoyt, Z. M.

Kelly, J. H.

Kruschwitz, B. E.

Kurtev, S. Z.

Li, M.

Pasini, E.

G. Gardelle and E. Pasini, “A simple operation of a plasma electrode Pockels cell for the laser Megajouls,” J. Appl. Phys. 91(5), 2631–2636 (2002).
[CrossRef]

Petty, C. S.

L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
[CrossRef]

Savov, S. D.

Shoup Iii, M. J.

Taniguchi, J.

Walker, T. W.

Waxer, L. J.

Weaver, L. F.

L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
[CrossRef]

Wenqiong, G.

Wu, D.

Xiongjun, Z.

Yu, H.

Zhan, S.

Zhang, J.

Zhang, X.

Zheng, J.

Zhou, X.

Appl. Opt.

IEEE J. Quantum Electron.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

J. Appl. Phys.

L. F. Weaver, C. S. Petty, and D. Eimerl, “Multikilowatt Pockels cell for high average power laser systems,” J. Appl. Phys. 68(6), 2589–2598 (1990).
[CrossRef]

G. Gardelle and E. Pasini, “A simple operation of a plasma electrode Pockels cell for the laser Megajouls,” J. Appl. Phys. 91(5), 2631–2636 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Tokita, J. Kawanaka, and Y. Izawa, “Sapphire cooling at both faces of high-power cryogenic Yb:YAG disk laser,” 2nd International Workshop on High Energy Class Diode Pumped Solid State Lasers, Jena, Germany, 10–12 June (2005).

J. Caird, A. Bayramian, et al., “Mercury: A high repetition rate laser for high energy density physics, ” 29th European Conference on Laser Interaction with Matter, Madrid, Spain, UCRL-PRES-221983 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A photograph of the RPC, installed on an adjustable mechanical support (a). A schematic cut is also displayed which points out the main parts of the RPC (b).

Fig. 2
Fig. 2

The optical bench set up in the laboratory to analyze the RPC. The part A is the one used to detect the incident laser beam, whereas the part B is the one used to measure the reflective laser beam.

Fig. 3
Fig. 3

The distribution of the measured point across the surface of the crystal

Fig. 4
Fig. 4

A CCD photograph of neon gas discharging.

Fig. 5
Fig. 5

An oscillogram of the chopped wave and the voltage pulse

Fig. 6
Fig. 6

The dependence of switch efficiency (ηsw ) on switch-pulse voltage (Vsw ).

Fig. 7
Fig. 7

The steady-state temperature distribution in KD*P and copper-sink

Fig. 8
Fig. 8

Depolarization distribution at steady state

Fig. 9
Fig. 9

Wave-front distribution (λ = 1064 nm)

Tables (1)

Tables Icon

Table 1 The static extinction ratio and switch efficiency at six typical points

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V π/2 = λ / 4 n o 3 r 63
V π / 2 = V s w C s h e a t h C s h e a t h + C K D * P
E R = χ I B P I A P / I B V I A V
η s w = [ 1 I B P ' I A P ' / ( χ I B P I A P ) ] 100 %
q v = α I ( x , y , z )

Metrics