Abstract

Luminescent solar concentrators promise to reduce the cost of solar energy, but are hindered by a number of losses. Escape of luminescence through the large waveguide-air interfaces can be attenuated through alignment of the optical transition dipole of the luminophore along the waveguide surface normal, directing the maximum possible proportion of luminescence into waveguide modes. We demonstrate such alignment using a guest-host dye-doped liquid crystal sandwiched between conductive glass slides. Application of a potential while illuminating through a narrow edge caused a drop in the intensity of luminescence escaping the large surfaces, and an increase in the intensity of light escaping the narrow edges of the system. This is explained in terms of alignment of the transition dipoles of the dye. We discuss implementation in a luminescent solar concentrator.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. A. Goetzberger, and W. Greubel, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
    [CrossRef]
  3. J. S. Batchelder, Ph.D. thesis, Calif. Inst. Tech. (1981).
  4. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [CrossRef] [PubMed]
  5. R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934–2940 (1981).
    [CrossRef] [PubMed]
  6. J. Sansregret, J. M. Drake, W. T. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22, 573–577 (1983).
    [CrossRef] [PubMed]
  7. W. G. van Sark, K. W. Barnham, L. H. Slooff, A. J. Chatten, A. Buchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donega, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators—A review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [CrossRef] [PubMed]
  8. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763–6768 (2008).
    [CrossRef] [PubMed]
  9. M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” Presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3–7 September 2007.
  10. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
    [CrossRef]
  11. A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
    [CrossRef]
  12. H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
    [CrossRef]
  13. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
    [CrossRef]

2010 (1)

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

2009 (1)

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

2008 (3)

1983 (1)

1982 (1)

A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
[CrossRef]

1981 (2)

1977 (1)

A. Goetzberger, and W. Greubel, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

1976 (1)

Baldo, M. A.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Barnham, K. W.

Bastiaansen, C. W. M.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

Batchelder, J. S.

Bende, E. E.

Bose, R.

Broer, D. J.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

Buchtemann, A.

Budel, T.

Burgers, A. R.

Chatten, A. J.

Cole, T.

De Mello Donega, C.

Debije, M. G.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763–6768 (2008).
[CrossRef] [PubMed]

Drake, J. M.

Farrell, D. J.

Fayer, M. D.

Goetzberger, A.

A. Goetzberger, and W. Greubel, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Greubel, W.

A. Goetzberger, and W. Greubel, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Hermans, K.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

Hoeks, T. L.

Kaiser, A.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

Kennedy, M.

Kim, H.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Koole, R.

Krotz, O.

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

Lambe, J.

Langhals, H.

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
[CrossRef]

Lesiecki, M. L.

Loring, R. F.

Markle, S.

A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
[CrossRef]

McCormack, S. J.

Meijerink, A.

Meyer, A.

Meyer, T.

Mulder, C. L.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Olson, R. W.

Poxleitner, S.

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

Pust, T.

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

Quilitz, J.

Rademacher, A.

A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
[CrossRef]

Reusswig, P. D.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Richards, B. S.

Rothschild, C.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Rowan, B. C.

Sansregret, J.

Slooff, L. H.

Thomas, W. T. L.

van Sark, W. G.

Vanmaekelbergh, D.

Velázquez, A. M.

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rothschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A70–A89 (2010).
[CrossRef]

Verbunt, P. P. C.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763–6768 (2008).
[CrossRef] [PubMed]

Walter, A.

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

Weber, W. H.

Zewail, A. H.

Adv. Funct. Mater. (1)

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals,” Adv. Funct. Mater. 19, 1–6 (2009).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. (Berl.) (1)

A. Goetzberger, and W. Greubel, “Solar Energy Conversion with Fluorescent Collectors,” Appl. Phys. (Berl.) 14, 123–139 (1977).
[CrossRef]

Chem. Ber. (1)

A. Rademacher, S. Markle, and H. Langhals, “Lösliche Perylen-Fluoreszenzfarbstoffe mit höher Photostabilitat,” Chem. Ber. 115, 2927–2934 (1982).
[CrossRef]

Eur. J. Org. Chem. (1)

H. Langhals, S. Poxleitner, O. Krotz, T. Pust, and A. Walter, “FRET in Orthogonally Arranged Chromophores,” Eur. J. Org. Chem. 27, 4559–4562 (2008).
[CrossRef]

Opt. Express (2)

Other (2)

J. S. Batchelder, Ph.D. thesis, Calif. Inst. Tech. (1981).

M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” Presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3–7 September 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic showing the expected manifestation of homeotropic alignment: increased absorption of light propagating within the substrate plane (1), decreased loss fraction enhancing the proportion of confined luminescence (2) and diminishing loss through the escape cones (3), and increased transmission of light propagating perpendicular to the substrate (4). Arrows S and T denote lamp beam directions used in the experiment. The enlarged PDI molecule shows the transition dipole μ, wave vector k and emission angle θ.

Fig. 2
Fig. 2

Emission from the top surface of the narrow-edge illuminated device (A) and a narrow edge parallel to the lamp beam (B) before and after application of 50 V across the layer. The solid lines are fits to the data. Inset: Fits to the emission spectra from B normalised about the bluer emission peak at 553 nm, showing a clear reabsorption shift when the potential is applied.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = 2 4 π r 2 ( 0 θ c sin 2 ( θ ) 2 π r 2 sin ( θ ) d θ ) = 1 12 ( cos ( 3 θ c ) 9 cos ( θ c ) + 8 )

Metrics