Abstract

In this paper, a single stage solar cell concentrator is designed and discussed. The proposed concentrator consists of refraction prisms and total internal reflection prisms in the inner and outer areas, respectively. In order to compensate for dispersion, all odd zones gather the light onto the –D position, while all even zones gather the light onto the + D position. Finally, the hybrid concentrator achieves optical efficiency of 89.8% for normally incident light without an antireflection coating. An acceptance angle of ± 0.78° at 1dB loss is achieved without using additional secondary optics. In addition, the fabrication tolerance is also analyzed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. King, “Raising the efficiency ceiling with multijunction III-V concentrator photovoltaics,” Proceeding 23rd EPVSEC (2008).
  2. I. Garca, C. Algora, I. Rey-Stolle, and B. Galiana, “Study of non-uniform light profiles on high concentration III-V solar cells using quasi-3D distributed models,” Proceeding 33rd IEEE Photovoltaic Specialist Conference (2008).
  3. E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
    [CrossRef]
  4. R. Winston, J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30(19), 2617–2619 (2005).
    [CrossRef] [PubMed]
  5. W. J. Smith, “Modern Optical Engineer” fourth edition, p.154–155 (Graw Hill 2008)
  6. M. Victoria, C. Domínguez, I. Antón, G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
    [CrossRef] [PubMed]
  7. Breault Research Organization, http://www.breault.com .
  8. A. Suzuki, and R. Leutz, Nonimaging Fresnel Lenses: Design And Performance Of Solar Concentrators, Springer (2006)
  9. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [CrossRef]
  10. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
    [CrossRef]
  11. D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

2009 (2)

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

M. Victoria, C. Domínguez, I. Antón, G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[CrossRef] [PubMed]

2007 (2)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

2006 (1)

E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
[CrossRef]

2005 (1)

Antón, I.

Bernabeu, E.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Clemente, J. M. L.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Domingo-Manrique, A.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Domínguez, C.

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Fernández-Balbuena, A. Á.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Feuermann, D.

E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
[CrossRef]

García-Botella, Á.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Gordon, J. M.

E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
[CrossRef]

R. Winston, J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30(19), 2617–2619 (2005).
[CrossRef] [PubMed]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Katz, E. A.

E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
[CrossRef]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Sala, G.

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Vázquez-Moliní, D.

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Victoria, M.

Winston, R.

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Proc. SPIE (1)

D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, Á. García-Botella, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. SPIE 7407, 740701 (2009).

Prog. Photovoltaics (1)

E. A. Katz, J. M. Gordon, D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovoltaics 14(4), 297–303 (2006).
[CrossRef]

Other (5)

Breault Research Organization, http://www.breault.com .

A. Suzuki, and R. Leutz, Nonimaging Fresnel Lenses: Design And Performance Of Solar Concentrators, Springer (2006)

R. King, “Raising the efficiency ceiling with multijunction III-V concentrator photovoltaics,” Proceeding 23rd EPVSEC (2008).

I. Garca, C. Algora, I. Rey-Stolle, and B. Galiana, “Study of non-uniform light profiles on high concentration III-V solar cells using quasi-3D distributed models,” Proceeding 33rd IEEE Photovoltaic Specialist Conference (2008).

W. J. Smith, “Modern Optical Engineer” fourth edition, p.154–155 (Graw Hill 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the proposed solar concentrator. The inner and outer areas of the concentrator are formed by refraction and TIR prisms, respectively.

Fig. 2
Fig. 2

(a) Deflected angle ϕ as a function of the prism angle θ, where the black and red lines correspond to: the (b) refraction prism; and (c) TIR prism, respectively.

Fig. 3
Fig. 3

Irradiance distribution at the solar cell position when the light is focused on the + D position and the index of the prism is (a) n = 1.48, (b) n = 1.49 and (c) n = 1.5. When the light is focused on the –D position, the irradiance distributions for (d) n = 1.48, (e) n = 1.49 and (f) n = 1.5 are also shown. When the light is focused on the + D position with a donut-shaped distribution as shown in 3(b), the light is over-focused or blurred for lower and higher indices, respectively. On the contrary, when the light is focused on the –D position with a donut-shaped distribution as shown in 3(e), the light is blurred or over-focused for lower and higher indices, respectively.

Fig. 4
Fig. 4

Irradiance distributions at the solar cell position for the absorption spectral range of (a) InGaP layer (400nm~700nm), (b) InGaAs layer (700nm~900nm), and (c) Ge layer (900nm~1600) when the odd zones gather the light on to the + D position and the even zones gather the light on to the –D position.

Fig. 5
Fig. 5

Acceptance angle of the proposed concentrator. The black solid line indicates the overall efficiency. The red, green and blue dashed lines indicate the optical efficiency for InGaP, InGaAs and Ge layers, respectively. The input solar light is assumed to be AM1.5. α90%, of the overall efficiency is ± 0.78°.

Fig. 6
Fig. 6

Optical efficiency as a function of the fabrication error, Δθ. The black color indicates the overall optical efficiency. The red, green and blue colors indicate the optical efficiencies for the InGaP, InGaAs and Ge layers, respectively.

Tables (1)

Tables Icon

Table 1 Specifications of Concentric Prisms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n sin θ = sin ( ϕ + θ ) ,
n sin ( 2 θ 90 o ) = sin ( 90 o ϕ ) ,
n 2 ( λ ) = A 1 + A 2 λ 2 + A 3 λ 2 + A 4 λ 4 + ,
p ( x ) = 1 2 π σ 2 exp ( x 2 2 σ 2 )  ,  σ = Δ θ

Metrics