Abstract

Solar-cell efficiencies have exceeded 40% in recent years. The keys to achieving these high efficiencies include: 1) use of multiple materials that span the solar spectrum, 2) growth of these materials with near-perfect quality by using epitaxial growth on single-crystal substrates, and 3) use of concentration. Growth of near-perfect semiconductor materials is possible when the lattice constants of the materials are matched or nearly matched to that of a single-crystal substrate. Multiple material combinations have now demonstrated efficiencies exceeding 40%, motivating incorporation of these cells into concentrator systems for electricity generation. The use of concentration confers several key advantages.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [CrossRef]
  2. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), 839–846 (1980).
    [CrossRef]
  3. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
    [CrossRef]
  4. G. L. Araujo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994).
    [CrossRef]
  5. A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
    [CrossRef]
  6. A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Progress in Photovoltaics 10(5), 299–307 (2002).
    [CrossRef]
  7. I. Tobias and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Progress in Photovoltaics 10, 323–329 (2002).
    [CrossRef]
  8. S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
    [CrossRef]
  9. R. R. King, et al., “Band-gap engineered architectures for high-efficiency multijunction concentrator solar cells,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.
  10. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
    [CrossRef]
  11. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
    [CrossRef]
  12. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
    [CrossRef]
  13. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
    [CrossRef]

2009

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

2008

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

2002

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Progress in Photovoltaics 10(5), 299–307 (2002).
[CrossRef]

I. Tobias and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Progress in Photovoltaics 10, 323–329 (2002).
[CrossRef]

1996

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

1994

G. L. Araujo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994).
[CrossRef]

1980

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), 839–846 (1980).
[CrossRef]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

1952

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[CrossRef]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[CrossRef]

Araujo, G. L.

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

G. L. Araujo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994).
[CrossRef]

Bett, A. W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Brown, A. S.

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Progress in Photovoltaics 10(5), 299–307 (2002).
[CrossRef]

De Vos, A.

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), 839–846 (1980).
[CrossRef]

Dimroth, F.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Friedman, D. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Geisz, J.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Geisz, J. F.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Green, M. A.

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Progress in Photovoltaics 10(5), 299–307 (2002).
[CrossRef]

Guter, W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Hall, R. N.

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[CrossRef]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Kurtz, S.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Luque, A.

I. Tobias and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Progress in Photovoltaics 10, 323–329 (2002).
[CrossRef]

Marti, A.

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

G. L. Araujo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994).
[CrossRef]

McMahon, W. E.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Myers, D.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Oliva, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Read, W. T.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[CrossRef]

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Schöne, J.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[CrossRef]

Siefer, G.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Steiner, M.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Tobias, I.

I. Tobias and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Progress in Photovoltaics 10, 323–329 (2002).
[CrossRef]

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Appl. Phys. Lett.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

J. Appl. Phys.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[CrossRef]

J. Phys. D

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), 839–846 (1980).
[CrossRef]

Phys. Rev.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[CrossRef]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[CrossRef]

Progress in Photovoltaics

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Progress in Photovoltaics 10(5), 299–307 (2002).
[CrossRef]

I. Tobias and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Progress in Photovoltaics 10, 323–329 (2002).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Progress in Photovoltaics 16(6), 537–546 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells

G. L. Araujo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994).
[CrossRef]

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

Other

R. R. King, et al., “Band-gap engineered architectures for high-efficiency multijunction concentrator solar cells,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Historic summary of champion solar-cell efficiencies.

Fig. 2
Fig. 2

Schematic showing how each layer of a multijunction solar cell absorbs a portion of the solar spectrum. The rectangles underneath represent semiconductor materials with band gaps that absorb the indicated portion of the solar spectrum. The semiconductor materials transmit light with energy less than the band gap of the material, providing a natural way to filter the light.

Fig. 3
Fig. 3

Band gap as a function of lattice constant for selected semiconductors. The symbols represent the elements or binaries, with circles indicating direct-gap materials and triangles and squares representing indirect transitions to the X and L bands, respectively. The lines indicate ternary alloys.

Fig. 4
Fig. 4

Schematic of a solar cell. The solid white lines indicate the conduction and valence bands of the semiconductor layers; the dotted white lines indicate the Fermi level in the dark. As shown, the light is incident from the left; absorption of the light creates electron-hole pairs. These minority carriers diffuse through the n- and p-type layers. They may be separated at the junction (within the width of the depleted layer) and then used to do work in an outside circuit. However, carriers that recombine before reaching the junction are lost. The window and passivating layers help to prevent loss of the minority carriers, increasing the efficiency of the solar cell.

Fig. 5
Fig. 5

Effect of concentration on the open-circuit voltage (Voc), fill factor (measure of the squareness of the current-voltage curve), and efficiency of the cell described in reference [11].

Tables (1)

Tables Icon

Table 1 Summary of Recent Three-Junction Champion Efficiencies

Metrics