Abstract

Recently introduced DLP Discovery technology allows for tens of kHz binary image switching, which has great potential for superfast 3-D shape measurement. This paper presents a system that realizes 3-D shape measurement by using a DLP Discovery technology to switch binary structured patterns at very high frame rates. The sinusoidal fringe patterns are generated by properly defocusing the projector. Combining this approach with a phase-shifting method, we achieve an unprecedented rate for 3-D shape measurement: 667 Hz. This technology can be applied to numerous applications including medical science, biometrics, and entertainment.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, “Recent Progresses on Real-time 3-D Shape Measurement Using Digital Fringe Projection Techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
    [CrossRef]
  2. R. Höfling, and P. Aswendt, “Real time 3D Shape Recording by DLP-based All-digital Surface Encoding,” in Proc. SPIE, vol. 7210, pp. 72,100E1–8 (2009).
  3. R. Höfling, “High-speed 3D Imaging by DMD Technology,” in Proc. SPIE, vol. 5303, pp. 188–194 (2004).
    [CrossRef]
  4. R. Höfling, and E. Ahl, “ALP: Universal DMD Controller for Metrology and Testing,” in Proc. SPIE, vol. 5289, pp. 322–329 (2004).
    [CrossRef]
  5. S. Lei, and S. Zhang, “Flexible 3-D Shape Measurement Using Projector Defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [CrossRef] [PubMed]
  6. S. Lei, and S. Zhang, “Digital Sinusoidal Fringe Pattern Generation: Defocusing Binary Patterns VS Focusing Sinusoidal Patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
    [CrossRef]
  7. D. Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, New York, 2007).
    [CrossRef]
  8. D. C. Ghiglia, and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, Inc, 1998).
  9. C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic Phase-shifting Profilometry Based on Digital Micromirror Device Technology,” Appl. Opt. 41(8), 5896–5904 (2002).
    [CrossRef] [PubMed]
  10. S. Zhang, and P. S. Huang, “Novel Method for Structured Light System Calibration,” Opt. Eng. 45(8), 083601 (2006).
    [CrossRef]

2010

S. Zhang, “Recent Progresses on Real-time 3-D Shape Measurement Using Digital Fringe Projection Techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

S. Lei, and S. Zhang, “Digital Sinusoidal Fringe Pattern Generation: Defocusing Binary Patterns VS Focusing Sinusoidal Patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

2009

2006

S. Zhang, and P. S. Huang, “Novel Method for Structured Light System Calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

2002

Chiang, F.-P.

Huang, P. S.

Lei, S.

S. Lei, and S. Zhang, “Digital Sinusoidal Fringe Pattern Generation: Defocusing Binary Patterns VS Focusing Sinusoidal Patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

S. Lei, and S. Zhang, “Flexible 3-D Shape Measurement Using Projector Defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[CrossRef] [PubMed]

Zhang, C.

Zhang, S.

S. Zhang, “Recent Progresses on Real-time 3-D Shape Measurement Using Digital Fringe Projection Techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

S. Lei, and S. Zhang, “Digital Sinusoidal Fringe Pattern Generation: Defocusing Binary Patterns VS Focusing Sinusoidal Patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

S. Lei, and S. Zhang, “Flexible 3-D Shape Measurement Using Projector Defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[CrossRef] [PubMed]

S. Zhang, and P. S. Huang, “Novel Method for Structured Light System Calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

Appl. Opt.

Opt. Eng.

S. Zhang, and P. S. Huang, “Novel Method for Structured Light System Calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

Opt. Lasers Eng.

S. Lei, and S. Zhang, “Digital Sinusoidal Fringe Pattern Generation: Defocusing Binary Patterns VS Focusing Sinusoidal Patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

S. Zhang, “Recent Progresses on Real-time 3-D Shape Measurement Using Digital Fringe Projection Techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

Opt. Lett.

Other

R. Höfling, and P. Aswendt, “Real time 3D Shape Recording by DLP-based All-digital Surface Encoding,” in Proc. SPIE, vol. 7210, pp. 72,100E1–8 (2009).

R. Höfling, “High-speed 3D Imaging by DMD Technology,” in Proc. SPIE, vol. 5303, pp. 188–194 (2004).
[CrossRef]

R. Höfling, and E. Ahl, “ALP: Universal DMD Controller for Metrology and Testing,” in Proc. SPIE, vol. 5289, pp. 322–329 (2004).
[CrossRef]

D. Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, New York, 2007).
[CrossRef]

D. C. Ghiglia, and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, Inc, 1998).

Supplementary Material (2)

» Media 1: MPG (708 KB)     
» Media 2: MPG (844 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photograph of the superfast 3-D shape measurement system.

Fig. 2.
Fig. 2.

Example of measuring a 3-D surface. (a) Photograph of the object; (b) I 1(2π/3); (c) I 2(0); (d) I 3(2π/3); (e) Wrapped phase map; (f) Unwrapped phase map.

Fig. 3.
Fig. 3.

Measurement results of a known height object. (a) Photograph of the object; (b) 3-D plot of the measured result; (c) Plot of one cross section.

Fig. 4.
Fig. 4.

3-D plot of the measurement.

Fig. 5.
Fig. 5.

Measurement results of a vibrating cantilever beam. The color of the image indicates depth, z, information (Media 1).

Fig. 6.
Fig. 6.

Measurement results of a vibrating cantilever beam and plotted in 3-D (Media 2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ 2 π / 3 ) ,
I 2 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ ) ,
I 3 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ + 2 π / 3 ) .
ϕ ( x , y ) = tan 1 [ 3 ( I 1 I 3 ) / ( 2 I 2 I 2 I 3 ) ] .

Metrics