Abstract

We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
    [CrossRef]
  2. Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” (2002).
  3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31, 3083–3085 (2006).
    [CrossRef] [PubMed]
  4. J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
    [CrossRef]
  5. F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006).
    [CrossRef]
  6. Q. Wang, and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett. 42, 1304–1305 (2006).
    [CrossRef]
  7. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009).
    [CrossRef] [PubMed]
  8. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17, 3521–3530 (2009).
    [CrossRef] [PubMed]
  9. M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).
  10. X. Yu, T. B. Gibbon, M. Pawlik, S. Blaaberg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009).
    [CrossRef] [PubMed]
  11. Y. S. Juan, and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express 17, 18596–18605 (2009).
    [CrossRef]
  12. Y. S. Juan, and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
    [CrossRef] [PubMed]
  13. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
    [CrossRef]
  14. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
    [CrossRef] [PubMed]
  15. J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, “4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission,” Opt. Express 17, 16898–16903 (2009).
    [CrossRef] [PubMed]

2009

J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
[CrossRef]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17, 3521–3530 (2009).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
[CrossRef] [PubMed]

X. Yu, T. B. Gibbon, M. Pawlik, S. Blaaberg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009).
[CrossRef] [PubMed]

J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, “4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission,” Opt. Express 17, 16898–16903 (2009).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express 17, 18596–18605 (2009).
[CrossRef]

2008

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
[CrossRef] [PubMed]

2006

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31, 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006).
[CrossRef]

Q. Wang, and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett. 42, 1304–1305 (2006).
[CrossRef]

2003

D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[CrossRef]

Abtahi, M.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Blaaberg, S.

Blais, S.

Bolea, M.

Caballero, A.

Capmany, J.

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
[CrossRef]

Chang-Hasnain, C.

Gibbon, T. B.

Hirt, W.

D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[CrossRef]

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
[CrossRef]

Jensen, J. B.

Juan, Y. S.

LaRochelle, S.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Lau, E. K.

Li, J.

J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Liang, Y.

J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Lin, F. Y.

Magne, J.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Mirshafiei, M.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Monroy, I. T.

Mora, J.

Ortega, B.

Parekh, D.

Pawlik, M.

Porcine, D.

D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[CrossRef]

Rodes, R.

Rusch, L. A.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Sun, J.

Sun, Q.

Sung, H. K.

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
[CrossRef]

Wang, J.

Wang, Q.

Wong, K. K. Y.

J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Wu, M. C.

Yao, J.

Yao, J. P.

F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006).
[CrossRef]

Yu, X.

Zeng, F.

F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31, 3083–3085 (2006).
[CrossRef] [PubMed]

Zhang, W.

Zhao, X.

Electron. Lett.

Q. Wang, and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett. 42, 1304–1305 (2006).
[CrossRef]

IEEE Commun. Mag.

D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41, 66–74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 15, 604–611 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

F. Zeng, and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 31, 823–825 (2006).
[CrossRef]

J. Lightwave Technol.

M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” J. Lightwave Technol. 20, 135–137 (2008).

Opt. Express

Opt. Lett.

Other

Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic setup of the UWB-over-fiber system. Optical pulses are generated by the master laser (ML) through optoelectronic feedback. The pulses are injected into the slave laser (SL) optically to generate the UWB signals. DG: data generator, PD: photodetector, OI: optical isolator, BS: beamsplitter, PBS: polarizing beamsplitter, HW: half-wave plate, VA: variable attenuator, FR: Faraday rotator, and A: amplifier. Solid and dashed lines indicate optical and electrical paths, respectively.

Fig. 2.
Fig. 2.

(a) Power spectrum and (b) time series of the injection pulses from the ML with frep = 0.9 GHz.

Fig. 3.
Fig. 3.

(a) Power spectrum and (b) time series of the UWB signal generated by the SL through optical pulse injection with frep = 0.9 GHz, ξi = 0.23, and Ω = 14.6 GHz.

Fig. 4.
Fig. 4.

(a–c) Power spectra and (d–f) time series of the UWB signal transmitted through a 2 km fiber, a pair of antenna (back-to-back), and both the fiber and the antennas, respectively.

Fig. 5.
Fig. 5.

Power spectra of the UWB-over-fiber transmission over a 2 km fiber and wireless channels of (a) 25 cm and (b) 75 cm, respectively.

Fig. 6.
Fig. 6.

(a) Encoded data and (b) Decoded data after low-pass filtering.

Metrics