Abstract

We explore, by means of experiments and simulation, the power combining efficiency and power fluctuation of coherently phased 2, 4, 6, 8, 10, 12, 14, 16-channel fiber-laser arrays using fused 50:50 single-mode couplers. The measured evolution of power combining efficiency with array size agrees with simulations based on a new propagation model. For our particular system the power fluctuations due to small wavelength-scale length variations are seen to scale with array size as N3. Beat spectra support the notion that a lack of coherently-combined supermodes in arrays of increasing size leads to a decrease in combined-power efficiency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
    [CrossRef]
  2. A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
    [CrossRef]
  3. M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
    [CrossRef]
  4. C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86(20), 201118 (2005).
    [CrossRef]
  5. J. Cao, J. Hou, Q. Lu, and X. Xu, “Numerical research on self-organized coherent fiber laser arrays with circulating field theory,” J. Opt. Soc. Am. B 25(7), 1187–1192 (2008).
    [CrossRef]
  6. A. E. Siegman, “Resonant modes of linearly coupled multiple fiber laser structures,” unpublished (2004).
  7. D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
    [CrossRef]
  8. J. E. Rothenberg, “Passive coherent phasing of fiber laser arrays,” Proc. SPIE 6873, 687315 (2008).
    [CrossRef]
  9. T. W. Wu, W. Z. Chang, A. Galvanauskas, and H. G. Winful, “Model for passive coherent beam combining in fiber laser arrays,” Opt. Express 17(22), 19509–19518 (2009).
    [CrossRef] [PubMed]
  10. M. Khajavikhan and J. R. Leger, “Modal Analysis of Path Length Sensitivity in Superposition Architectures for Coherent Laser Beam Combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
    [CrossRef]
  11. C. J. Corcoran and F. Durville, “Passive Phasing in a Coherent Laser Array,” IEEE J. Sel. Top. Quantum Electron. 15(2), 294–300 (2009).
    [CrossRef]

2009 (3)

T. W. Wu, W. Z. Chang, A. Galvanauskas, and H. G. Winful, “Model for passive coherent beam combining in fiber laser arrays,” Opt. Express 17(22), 19509–19518 (2009).
[CrossRef] [PubMed]

M. Khajavikhan and J. R. Leger, “Modal Analysis of Path Length Sensitivity in Superposition Architectures for Coherent Laser Beam Combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, “Passive Phasing in a Coherent Laser Array,” IEEE J. Sel. Top. Quantum Electron. 15(2), 294–300 (2009).
[CrossRef]

2008 (2)

2005 (3)

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
[CrossRef]

C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86(20), 201118 (2005).
[CrossRef]

2004 (1)

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

2001 (1)

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[CrossRef]

Bisson, J.

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

Bruesselbach, H.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Cao, J.

Chang, W. Z.

Cheo, P. K.

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[CrossRef]

Corcoran, C. J.

C. J. Corcoran and F. Durville, “Passive Phasing in a Coherent Laser Array,” IEEE J. Sel. Top. Quantum Electron. 15(2), 294–300 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86(20), 201118 (2005).
[CrossRef]

Dunning, G. J.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Durville, F.

C. J. Corcoran and F. Durville, “Passive Phasing in a Coherent Laser Array,” IEEE J. Sel. Top. Quantum Electron. 15(2), 294–300 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86(20), 201118 (2005).
[CrossRef]

Galvanauskas, A.

Hammon, D. L.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Hou, J.

Jones, D. C.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Khajavikhan, M.

M. Khajavikhan and J. R. Leger, “Modal Analysis of Path Length Sensitivity in Superposition Architectures for Coherent Laser Beam Combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[CrossRef]

King, G. G.

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[CrossRef]

Kouzentsov, D.

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

Leger, J. R.

M. Khajavikhan and J. R. Leger, “Modal Analysis of Path Length Sensitivity in Superposition Architectures for Coherent Laser Beam Combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[CrossRef]

Liu, A.

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[CrossRef]

Lu, Q.

Mangir, M. S.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Matsuo, K.

A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
[CrossRef]

Minden, M. L.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Rogers, J. L.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, “Passive coherent phasing of fiber laser arrays,” Proc. SPIE 6873, 687315 (2008).
[CrossRef]

Shirakawa, A.

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
[CrossRef]

Solis, A. J.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Ueda, K.

A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
[CrossRef]

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

Vaughan, L.

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Winful, H. G.

Wu, T. W.

Xu, X.

Appl. Phys. Lett. (1)

C. J. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86(20), 201118 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Khajavikhan and J. R. Leger, “Modal Analysis of Path Length Sensitivity in Superposition Architectures for Coherent Laser Beam Combining,” IEEE J. Sel. Top. Quantum Electron. 15(2), 281–290 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, “Passive Phasing in a Coherent Laser Array,” IEEE J. Sel. Top. Quantum Electron. 15(2), 294–300 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13(5), 439–441 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Rev. (1)

D. Kouzentsov, J. Bisson, A. Shirakawa, and K. Ueda, “Limits of Coherent Addition of Lasers: Simple Estimate,” Opt. Rev. 12(6), 445–447 (2005).
[CrossRef]

Proc. SPIE (3)

J. E. Rothenberg, “Passive coherent phasing of fiber laser arrays,” Proc. SPIE 6873, 687315 (2008).
[CrossRef]

A. Shirakawa, K. Matsuo, and K. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control,” Proc. SPIE 5709, 165–174 (2005).
[CrossRef]

M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan, “Self-organized coherence in fiber laser arrays,” Proc. SPIE 5335, 89–97 (2004).
[CrossRef]

Other (1)

A. E. Siegman, “Resonant modes of linearly coupled multiple fiber laser structures,” unpublished (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup as an example of 16-channel combining.

Fig. 2
Fig. 2

Configurations of 2- to 16-channel combining with a 2-laser array interval.

Fig. 3
Fig. 3

Combined-power efficiency and power fluctuation (error bars for experimental results) versus fiber array size.

Fig. 4
Fig. 4

Combined-power efficiency versus fiber array size between previous [2,7] and present works.

Fig. 5
Fig. 5

Peak-to-peak power fluctuation ranges versus array size from experiments, simulation, and N 3 fitting.

Fig. 6
Fig. 6

Experimental setup for beat spectrum measurements as an example of 4-channel combining.

Fig. 7
Fig. 7

Beat spectra of 2-channel (a) and the zoom-in of designated packet (b); and those of 4-channel (c) and the zoom-in of designated packet (d).

Fig. 8
Fig. 8

Simulation of beat spectra for 2-channel (a) with 47.82 and 46-m in-fiber lengths; and that of 4-channel (b) with 47.89, 46, 46.42, and 46.21-m in-fiber lengths.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N
P o u t i N P i .
Relative power fluctuation ( % ) = 3 σ P o u t ,
FSR = c 2 n Δ L ,
MS = c 2 n L ,
E j z = 1 2 ( g j α ) E j β 1 E j t + 1 2 ( b i β 2 ) 2 E j t 2 + i γ | E j | 2 E j ,
g j = g 0 j ( 1 + 0 T | E j | 2 d t T P s a t ) .

Metrics