Abstract

We present a broadband (460 - 980 nm) analysis of the nonlinear absorption processes in bulk ZnO, a large-bandgap material with potential blue-to-UV photonic device applications. Using an optical parametric amplifier we generated tunable 1-kHz repetition rate laser pulses and employed the Z-scan technique to investigate the nonlinear absorption spectrum of ZnO. For excitation wavelengths below 500 nm, we observed reverse saturable absorption due to one-photon excitation of the sample, agreeing with rate-equation modeling. Two- and three-photon absorption were observed from 540 to 980 nm. We also determined the spectral regions exhibiting mixture of nonlinear absorption mechanisms, which were confirmed by photoluminescence measurements.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
    [CrossRef]
  2. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
    [CrossRef]
  3. H. Yoshikawa, and S. Adachi, “Optical constants of ZnO,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 6237–6243 (1997).
  4. C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
    [CrossRef] [PubMed]
  5. Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
    [CrossRef]
  6. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  7. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005).
    [CrossRef]
  8. Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
    [CrossRef]
  9. J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
    [CrossRef] [PubMed]
  10. F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
    [CrossRef] [PubMed]
  11. X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997).
    [CrossRef]
  12. L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
    [CrossRef]
  13. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
    [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  15. H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983).
    [CrossRef]
  16. R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
    [CrossRef]
  17. A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
    [CrossRef]
  18. X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
    [CrossRef]
  19. E. W. V. Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical Limiting with Semiconductors,” J. Opt. Soc. Am. B 5(9), 1980–1989 (1988).
    [CrossRef]
  20. L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
    [CrossRef]
  21. W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
    [CrossRef]
  22. D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
    [CrossRef]

2009 (1)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

2008 (2)

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

2007 (3)

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

2006 (2)

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (1)

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

2003 (1)

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

2001 (1)

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[CrossRef]

1998 (1)

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[CrossRef]

1997 (1)

1995 (1)

R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

1988 (1)

1983 (1)

H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983).
[CrossRef]

Andrade, A. A.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Araujos, C. B.

H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983).
[CrossRef]

Aydil, E. S.

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

Balogh, D. T.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Borchers, C.

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

Brandi, H. S.

H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983).
[CrossRef]

Che, C. M.

Cheng, Y.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Chin, R. P.

R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
[CrossRef]

Clarke, D. R.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[CrossRef]

Corrêa, D. S.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Dai, D. C.

De Boni, L.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Decker, M.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Deepthy, A.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Dong, Z. W.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Duan, X. F.

Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[CrossRef]

Frank, T.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

E. W. V. Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical Limiting with Semiconductors,” J. Opt. Soc. Am. B 5(9), 1980–1989 (1988).
[CrossRef]

Hauschild, R.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

He, J.

Hofmann, D. M.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Huang, Y.

Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[CrossRef]

Irimpan, L.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Janotti, A.

A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

Ji, W.

Kalt, H.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Klingshirn, C.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Krishnan, B.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Li, H. P.

Liao, Y.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Lieber, C. M.

Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[CrossRef]

Liu, K. J.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Liu, M. G.

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

Look, D. C.

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[CrossRef]

Mansour, K.

Mendonça, C. R.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Meyer, B. K.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Mi, J.

Misoguti, L.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Müller, S.

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

Munoz-Sanjose, V.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Muntwiler, M.

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

Nampoori, V. P. N.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Norris, D. J.

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

Pensl, G.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Petrovakoch, V.

R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
[CrossRef]

Pfisterer, D.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Polyakov, S.

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

Priller, H.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Qian, S. X.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Qiu, J. R.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Qiu, X. Q.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Qu, Y. L.

Radhakrishnan, P.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Ronning, C.

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Sann, J.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Schwen, D.

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shen, Y. R.

R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
[CrossRef]

Shi, S. L.

Soileau, M. J.

Song, J.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Srikant, V.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[CrossRef]

Stegeman, G.

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

Stichtenoth, D.

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

Stryland, E. W. V.

Sun, H. Y.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Tang, S. H.

Tena-Zaera, R.

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

Tisdale, W. A.

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wang, X. S.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wu, Y. Y.

Xie, M. H.

Xu, J.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Xu, S. J.

Xu, Z. Z.

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yan, Y. L.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yoshino, F.

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

You, G. J.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Zeller, J.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Zhang, C. F.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Zhang, X. J.

Zhu, X. Y.

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

Zilio, S. C.

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

Advances in Spectroscopy for Lasers and Sensing (1)

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006).
[CrossRef]

Appl. Phys. B (1)

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. C Solid State Phys. (1)

H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983).
[CrossRef]

J. Phys. Chem. B (2)

L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004).
[CrossRef]

C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[CrossRef]

Nat. Photonics (1)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Opt. Commun. (1)

X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003).
[CrossRef] [PubMed]

Science (1)

R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995).
[CrossRef]

Small (1)

Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[CrossRef]

Other (1)

H. Yoshikawa, and S. Adachi, “Optical constants of ZnO,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 6237–6243 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Open aperture Z-scan curves at 500 nm (● - 15 GW/cm2), 730 nm (■ - 40 GW/cm2), and 820 nm (▲-120 GW/cm2) with the respective 1PA, 2PA, 3PA and theoretical fitting (solid line).

Fig. 2
Fig. 2

Two-photon (a) and three-photon (b) absorption coefficient vs. Ephoton / Egap. The solid lines are fittings using the theoretical calculation of the nonlinear optical absorption coefficient as described by Brandi and Araujo [15].

Fig. 3
Fig. 3

Photoluminescence measurements (log-log scale) that shows the slope at five different excitation wavelengths: 500, 530, 720, 800 and 820 nm, with slopes of 1.0, 1.5, 2, 2.8 and 3, respectively.

Fig. 4
Fig. 4

Excited state relaxation times as function of the excitation wavelength. The inset show the three-level energy diagram used to model the reverse saturable absorption effects.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d n 0 d t = w 01 n 0 + w e m n 1 + n 1 τ 10 ,
d n 1 d t = + w 01 n 0 w e m n 1 w 12 n 1 n 1 τ 10 + n 2 τ 21 ,
d n 2 d t = + w 12 n 1 n 2 τ 21 ,
α ( t ) = N { n 0 ( t ) σ 01 + n 1 ( t ) σ 12 } ,

Metrics