Abstract

UV illumination of a lithium niobate Q-switch was demonstrated as an effective means to eliminate a loss in hold-off and associated prelasing that occurs under cold temperature operation of Q-switched lasers. This degradation occurs due to the pyroelectric effect, where an accumulation of charge on crystal faces results in a reduction in the Q-switch hold-off and a spatially variable loss of the Q-switch in its high-transmission state, both resulting in lowering of the maximum Q-switched pulse energy. With UV illumination, the resulting creation of photo-generated carriers was shown to be effective in eliminating both of these effects. A Q-switched Nd:YAG laser utilizing UV-illuminated LiNbO3 was shown to operate under cold temperatures without prelasing or spatially variable loss.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006)
  2. D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163–170 (2005).
  3. K. Nassau and H. Levinstein, “Ferroelectric behavior of lithium niobate,” Appl. Phys. Lett. 7(3), 69–70 (1965).
    [CrossRef]
  4. A. Savage, “Pyroelectricity and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
    [CrossRef]
  5. P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
    [CrossRef]
  6. A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).
  7. A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).
  8. D. W. Smith, “Method of and means for neutralizing electrostatic charges on moving tapes and the like,” US Patent 2,264,683 (2 December 1941).
  9. C. W. Wallhausen, and H. H. Dooley, “Radioactive metal products and method for manufacturing”, US Patent 2,479,882 (23 August 1949).
  10. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
    [CrossRef]
  11. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
    [CrossRef]
  12. Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
    [CrossRef]
  13. L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
    [CrossRef]
  14. Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
    [CrossRef]

2005 (1)

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163–170 (2005).

2002 (1)

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

1986 (1)

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

1984 (1)

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

1983 (1)

A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).

1978 (1)

L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
[CrossRef]

1974 (2)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
[CrossRef]

1969 (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

1966 (1)

A. Savage, “Pyroelectricity and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[CrossRef]

1965 (1)

K. Nassau and H. Levinstein, “Ferroelectric behavior of lithium niobate,” Appl. Phys. Lett. 7(3), 69–70 (1965).
[CrossRef]

Blistanov, A. A.

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

Bulmer, C. H.

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

Burns, W. K.

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

Cressman, P. J.

L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
[CrossRef]

Cross, L. E.

L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
[CrossRef]

Filev, A. Y.

A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).

Geras’kin, V. V.

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Govorukhina, T. A.

A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).

Hatano, H.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Hiser, S. C.

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

Inuishi, Y.

Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
[CrossRef]

Jayavel, R.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Kitamura, K.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Levinstein, H.

K. Nassau and H. Levinstein, “Ferroelectric behavior of lithium niobate,” Appl. Phys. Lett. 7(3), 69–70 (1965).
[CrossRef]

Liu, Y.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Malkov, A. V.

A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).

Nakamura, M.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Nassau, K.

K. Nassau and H. Levinstein, “Ferroelectric behavior of lithium niobate,” Appl. Phys. Lett. 7(3), 69–70 (1965).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Nieuwsma, D. E.

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163–170 (2005).

Ohmori, Y.

Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
[CrossRef]

Puchkova, M. V.

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

Savage, A.

A. Savage, “Pyroelectricity and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[CrossRef]

Schein, L. B.

L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
[CrossRef]

Skeath, P.

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

Sorokin, N. G.

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

Stepanova, A. V.

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Wang, J.

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163–170 (2005).

Yamaji, T.

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

Yasojima, Y.

Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
[CrossRef]

Appl. Phys. Lett. (4)

K. Nassau and H. Levinstein, “Ferroelectric behavior of lithium niobate,” Appl. Phys. Lett. 7(3), 69–70 (1965).
[CrossRef]

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Appl. Phys. Lett. 49(19), 1221–1223 (1986).
[CrossRef]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Y. Ohmori, Y. Yasojima, and Y. Inuishi, “Control of optical damage in reduced LiNbO3 by external applied field,” Appl. Phys. Lett. 25(12), 716–717 (1974).
[CrossRef]

J. Appl. Phys. (4)

L. B. Schein, P. J. Cressman, and L. E. Cross, “Pyroelectric induced optical damage in LiNbO3,” J. Appl. Phys. 49(2), 798–800 (1978).
[CrossRef]

Y. Liu, R. Jayavel, M. Nakamura, K. Kitamura, T. Yamaji, and H. Hatano, “Suppression of beam fanning in near-stoichiometric lithium niobate crystal by ultraviolet light irradiation,” J. Appl. Phys. 92(9), 5578–5580 (2002).
[CrossRef]

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

A. Savage, “Pyroelectricity and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[CrossRef]

Proc. SPIE (1)

D. E. Nieuwsma and J. Wang, “Design of an advanced diode-pumped solid-state laser for high altitude airborne operations,” Proc. SPIE 5659, 163–170 (2005).

Sov. J. Opt. Technol. (1)

A. V. Malkov, A. Y. Filev, and T. A. Govorukhina, “Influence of pyroelectric effect on the contrast of a lithium niobate modulator,” Sov. J. Opt. Technol. 50, 50–52 (1983).

Sov. Phys. Solid State (1)

A. A. Blistanov, V. V. Geras’kin, A. V. Stepanova, M. V. Puchkova, and N. G. Sorokin, “Changes in the pyroelectric field and electrical conduction mechanisms in LiNbO3 at T=20-200 °C,” Sov. Phys. Solid State 26, 684–687 (1984).

Other (3)

D. W. Smith, “Method of and means for neutralizing electrostatic charges on moving tapes and the like,” US Patent 2,264,683 (2 December 1941).

C. W. Wallhausen, and H. H. Dooley, “Radioactive metal products and method for manufacturing”, US Patent 2,479,882 (23 August 1949).

Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics