Abstract

The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulse width of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from −84 to −90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
    [CrossRef]
  2. G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
    [CrossRef]
  3. S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
    [CrossRef]
  4. S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
    [CrossRef]
  5. Y. J. Kim, C. G. Lee, Y. Y. Chun, and C.-S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator,” Opt. Express 12(5), 907–915 (2004).
    [CrossRef] [PubMed]
  6. X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
    [CrossRef]
  7. C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
    [CrossRef]
  8. Y. M. Jhon, Y. T. Byun, and D. H. Woo, “Pulse-amplitude equalization using a polarization-maintaining laser resonator,” Opt. Lett. 31(18), 2678–2680 (2006).
    [CrossRef] [PubMed]
  9. M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
    [CrossRef]
  10. G. P. Agrawal and N. A. Olsson, “Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [CrossRef]
  11. G.-R. Lin, C.-K. Lee, and J.-J. Kang, “Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser,” Opt. Express 16(12), 9213–9221 (2008).
    [CrossRef] [PubMed]
  12. W. W. Tang and C. Shu, “Optical Generation of Amplitude-Equalized Pulses From a Rational Harmonic Mode-Locked Fiber Laser Incorporating an SOA Loop Modulator,” IEEE Photon. Technol. Lett. 15(1), 21–23 (2003).
    [CrossRef]
  13. P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
    [CrossRef]

2008 (1)

2007 (1)

S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
[CrossRef]

2006 (1)

2004 (3)

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C.-S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator,” Opt. Express 12(5), 907–915 (2004).
[CrossRef] [PubMed]

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
[CrossRef]

2003 (2)

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

W. W. Tang and C. Shu, “Optical Generation of Amplitude-Equalized Pulses From a Rational Harmonic Mode-Locked Fiber Laser Incorporating an SOA Loop Modulator,” IEEE Photon. Technol. Lett. 15(1), 21–23 (2003).
[CrossRef]

2002 (1)

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

2000 (1)

M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
[CrossRef]

1998 (1)

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

1997 (1)

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Ahn, J. T.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Bao, X.

S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
[CrossRef]

Byun, Y. T.

Cameron, J.

S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
[CrossRef]

Chang, Y.-C.

G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
[CrossRef]

Choi, H. K.

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

Chun, Y. Y.

Das, P.

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

Dong, X.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Feng, X.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

Jeon, M. Y.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Jhon, Y. M.

Kaechele, W.

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

Kai, G.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Kang, J.-J.

Kim, H. Y.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Kim, K. H.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Kim, Y. J.

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C.-S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator,” Opt. Express 12(5), 907–915 (2004).
[CrossRef] [PubMed]

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

Lee, C. G.

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C.-S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator,” Opt. Express 12(5), 907–915 (2004).
[CrossRef] [PubMed]

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

Lee, C.-K.

Lee, E. H.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Lee, H. K.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Li, Z.

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Lim, D. S.

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

Lin, G.-R.

G.-R. Lin, C.-K. Lee, and J.-J. Kang, “Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser,” Opt. Express 16(12), 9213–9221 (2008).
[CrossRef] [PubMed]

G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
[CrossRef]

Liu, H. F.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
[CrossRef]

Liu, Y.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

Mak, M. W. K.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Park, C. S.

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

Park, C.-S.

Pirich, A. R.

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

Shu, C.

W. W. Tang and C. Shu, “Optical Generation of Amplitude-Equalized Pulses From a Rational Harmonic Mode-Locked Fiber Laser Incorporating an SOA Loop Modulator,” IEEE Photon. Technol. Lett. 15(1), 21–23 (2003).
[CrossRef]

Tang, W. W.

W. W. Tang and C. Shu, “Optical Generation of Amplitude-Equalized Pulses From a Rational Harmonic Mode-Locked Fiber Laser Incorporating an SOA Loop Modulator,” IEEE Photon. Technol. Lett. 15(1), 21–23 (2003).
[CrossRef]

Theimer, J. P.

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

Tsang, H. K.

M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
[CrossRef]

Woo, D. H.

Wu, J.-R.

G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
[CrossRef]

Yang, S.

S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
[CrossRef]

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Yuan, S.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Zhang, W.

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

Zhao, C.

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Zhao, Q.

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

Electron. Lett. (2)

M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40GHz pulse-train generation using 10GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electron. Lett. 36(18), 1580–1581 (2000).
[CrossRef]

M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic mode locking in a ring-type fiber laser,” Electron. Lett. 34(2), 182–184 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, “Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, “Pulse-Amplitude Equalization in a Rational Harmonic Mode-Locked Fiber Laser Using Nonlinear Modulation,” IEEE Photon. Technol. Lett. 16(8), 1813–1815 (2004).
[CrossRef]

G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational Harmonic mode-locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-Perot Laser Diode,” IEEE Photon. Technol. Lett. 16(8), 1810–1812 (2004).
[CrossRef]

S. Yang, J. Cameron, and X. Bao, “Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser,” IEEE Photon. Technol. Lett. 19(6), 393–395 (2007).
[CrossRef]

S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer,” IEEE Photon. Technol. Lett. 15(3), 389–391 (2003).
[CrossRef]

W. W. Tang and C. Shu, “Optical Generation of Amplitude-Equalized Pulses From a Rational Harmonic Mode-Locked Fiber Laser Incorporating an SOA Loop Modulator,” IEEE Photon. Technol. Lett. 15(1), 21–23 (2003).
[CrossRef]

Opt. Commun. (1)

C. G. Lee, Y. J. Kim, H. K. Choi, and C. S. Park, “Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback,” Opt. Commun. 209(4-6), 417–425 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

P. Das, W. Kaechele, J. P. Theimer, and A. R. Pirich, “Rational harmonic mode locking fiber laser,” Proc. SPIE 3075, 21–32 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

System setup. AMP: electrical power amplifier; MZM: Mach-Zehnder modulator; PC: polarization controller; EDFA: Erbium-doped fiber amplifier; OC: optical coupler; ISO: optical isolator; SOA: semiconductor optical amplifier.

Fig. 2
Fig. 2

Simulations of (a) 10 GHz traditional (red dash line) gain-switching FPLD pulse-train, (b) Gain profile (blue dash line) and gain-window (gray solid line) of SOAFL, and (c) 3rd-order RHML pulse-train (black solid line) without pulse-amplitude equalization.

Fig. 3
Fig. 3

Simulations of (a) 10 GHz double-peak (red solid line) gain-switching FPLD pulse-train, (b) Gain profile (blue solid line) and uneven 3rd-order RHML- SOAFL pulse-train (black dash line), and (c) equalized 3rd-order RHML pulse-train (black solid line).

Fig. 4
Fig. 4

Illustration of the single-(normal) and double-peak (deformed) gain-switching pulses generated under the different biased points of MZM and different time-delay of the electrical sinusoidal wave

Fig. 5
Fig. 5

(a) Measured normal (black line) and deformed (blue line) sinusoidal-wave generation at DC biases of 3 and 5.5 V, respectively. (b) Measured 10-GHz single- and double-peak gain-switching FPLD pulse-trains.

Fig. 6
Fig. 6

Measured traces of (a) 20- and (b) 30-GHz RHML pulse without pulse-amplitude equalization.

Fig. 7
Fig. 7

Measured traces of (a) 20- and (b) 30-GHz RHML pulse with pulse-amplitude equalization.

Fig. 8
Fig. 8

Auto-correlated traces of 40-GHz RHML pulse-train without and with pulse-amplitude equalization.

Fig. 9
Fig. 9

Optical spectrum of 40-GHz RHML pulse-train without and with pulse-amplitude equalization.

Fig. 10
Fig. 10

RF spectra of 40-GHz RHML pulse without and with pulse-amplitude equalization (RBW = 1 MHz).

Fig. 11
Fig. 11

RF spectrum for 40-GHz RHML pulse with pulse-amplitude equalization (RBW = 10kHz).

Fig. 12
Fig. 12

Clock amplitude jitter vs. RHML order without (black) and with (blue) pulse-amplitude equalization.

Fig. 13
Fig. 13

RHML-SOAFL pulse width as a function of the inverse square root of repetition rate.

Fig. 14
Fig. 14

Phase noise spectra of 40 GHz RHML pulse-train without and with pulse-amplitude equalization.

Fig. 15
Fig. 15

Timing jitter of 40 GHz RHML pulse-train without and with pulse-amplitude equalization.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d h ( τ ) d τ = g 0 L h ( τ ) τ c P i n j ( τ ) E s a t ( e h ( τ ) 1 ) ,
P i n j ( τ ) = P M Z M , o u t ( τ ) = P p u l s e , i n ( τ ) 2 { 1 + sin [ π ( V i n p u t ) + V b i a s V π ] } = n = I p u l s e ( e ( τ n τ 0 ) 2 τ p 2 ) 2 { 1 + sin [ π ( I sine-wave sin ( ω τ + ϕ ) ) + V b i a s V π ] } ,
d h ( τ ) d τ = g 0 L h ( τ ) τ c n = 0 2 ( n + 1 ) I R H M L ( e ( τ n τ 0 ) 2 τ p 2 ) E s a t ( e h ( τ ) 1 ) + [ n = I p u l s e ( e ( τ n τ 0 ) 2 τ p 2 ) { 1 + sin [ π ( I sine-wave sin ( ω τ + ϕ ) ) + V b i a s V π ] } ] 2 E s a t ( e h ( τ ) 1 ) ,
a q ( k + 1 ) = a q ( k ) + g [ 1 ( 2 π q f m ) 2 Ω g 2 ] a q ( k ) l a q ( k ) + σ 2 [ a ( k ) q + 1 2 a ( k ) q + a ( k ) q 1 ] ,

Metrics