Abstract

We propose a novel concept for hybrid networks that combine point and distributed Brillouin sensors in a cost-effective architecture that also deploys remote distributed Raman amplification to extend the sensing range. A 46-km proof-of-concept network is experimentally demonstrated integrating point vibration sensors based on fiber Bragg gratings and tapers with distributed temperature sensing along the network bus. In this network the use of Raman amplification to compensate branching and fiber losses provides a temperature resolution of 0.7°C and 13 m. Moreover, it was possible to obtain good optical signal to noise ratio in the measurements from the four point vibration sensors that were remotely multiplexed in the network. These low-cost intensity sensors are able to measure vibrations in the 0.1 to 50 Hz frequency range, which are important in the monitoring of large infrastructures such as pipelines.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
    [CrossRef]
  2. A. Rogers, Handbook of fibre optic sensing technology, ed., J. M. Lopez-Higuera (John Wiley & Sons, Chichester, 2002), Chap. 14.
  3. A. D. Kersey, “Optical Fiber Sensors: Applications, analysis and future trends," eds., J. Dakin and B. Culshaw (Artech House, Boston, 1997), Chap. 15.
  4. J. D. C. Jones, and R. McBride, Optical fiber sensor technology: Devices and technology," ed., K. T. V. Grattan and B. T. Meggit, (Chapman & Hall, London, 1998), vol. 2, p. 117.
  5. M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications,” Proc. SPIE 6619, 66190D (2007).
    [CrossRef]
  6. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  7. E. Tapanes, “Fibre optic sensing solutions for real-time pipeline integrity monitoring,” presented at the Australian Pipeline Industry Association National Convention (2001), http://www.iceweb.com.au/Newtech/FFT_Pipeline_Integrity_paper.pdf
  8. P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
    [CrossRef]
  9. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
    [CrossRef]
  10. F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
    [CrossRef]
  11. C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
    [CrossRef]
  12. S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
    [CrossRef]
  13. S. Diaz, G. Lasheras, and M. López-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Opt. Express 13(24), 9666–9671 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9666 .
    [CrossRef] [PubMed]
  14. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
    [CrossRef]
  15. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
    [CrossRef]
  16. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [CrossRef]
  17. S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
    [CrossRef]
  18. D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
    [CrossRef]
  19. N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
    [CrossRef]
  20. Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272(1), 227–237 (2007).
    [CrossRef]
  21. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Distributed strain and temperature sensing over 50 km of SMF with 1 m spatial resolution employing BOTDA and optical pulse coding” Proc. SPIE 7503, PDP09 (2009)
  22. J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed., (Springer, 2004), Chap. 15.
  23. L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam, ed. (Springer, 2004), Chap. 6.
  24. I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).
  25. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25(23), 4421–4425 (1986).
    [CrossRef] [PubMed]

2009 (2)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
[CrossRef]

2008 (2)

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
[CrossRef]

2007 (2)

M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications,” Proc. SPIE 6619, 66190D (2007).
[CrossRef]

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272(1), 227–237 (2007).
[CrossRef]

2006 (1)

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

2005 (4)

S. Diaz, G. Lasheras, and M. López-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Opt. Express 13(24), 9666–9671 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9666 .
[CrossRef] [PubMed]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
[CrossRef]

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

2004 (1)

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

2003 (1)

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

1999 (2)

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

1998 (1)

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

1996 (1)

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

1986 (1)

Abad, S.

S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
[CrossRef]

Abrardi, L.

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Alahbabi, M. N.

Alasia, D.

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Aramburu, C.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Arregui, F. J.

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

Bakas, A.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Bao, X.

N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
[CrossRef]

Bariain, C.

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

Bariáin, C.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

Bernini, R.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Bourbonnais, R.

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Bures, J.

Cho, Y. T.

Datta, P.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Diaz, S.

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
[CrossRef]

S. Diaz, G. Lasheras, and M. López-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Opt. Express 13(24), 9666–9671 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9666 .
[CrossRef] [PubMed]

Elosua, C.

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

Fernandez-Valdevieso, C.

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

Foaleng-Mafang, S.

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Gong, Y. D.

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272(1), 227–237 (2007).
[CrossRef]

Gonthier, F.

Herráez, M. G.

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Jackson, D. A.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Lacroix, S.

Lasheras, G.

Lecœuche, V.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Li, H.-N.

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Li, W.

N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
[CrossRef]

Linze, N.

N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
[CrossRef]

Loayssa, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

López, S. M.

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Lopez-Amo, M.

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
[CrossRef]

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

López-Amo, M.

S. Diaz, G. Lasheras, and M. López-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Opt. Express 13(24), 9666–9671 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9666 .
[CrossRef] [PubMed]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Matias, I. R.

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

Matías, I. R.

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Minardo, A.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Newson, T. P.

Niklès, M.

M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications,” Proc. SPIE 6619, 66190D (2007).
[CrossRef]

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

Otón, J. M.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Pannell, C. N.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Sagues, M.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

Thevenaz, L.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Thévenaz, L.

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

Webb, D. J.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Zeni, L.

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Zornoza, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

Appl. Opt. (1)

Eng. Structures (1)

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Fiber Integrated Opt. (1)

I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).

IEEE Sens. J. (1)

S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996).
[CrossRef]

Opt. Commun. (2)

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272(1), 227–237 (2007).
[CrossRef]

Opt. Express (1)

Proc. SPIE (6)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009).
[CrossRef]

M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications,” Proc. SPIE 6619, 66190D (2007).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999).
[CrossRef]

F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998).
[CrossRef]

D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005).
[CrossRef]

N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009).
[CrossRef]

Sensors (1)

C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006).
[CrossRef]

Other (7)

A. Rogers, Handbook of fibre optic sensing technology, ed., J. M. Lopez-Higuera (John Wiley & Sons, Chichester, 2002), Chap. 14.

A. D. Kersey, “Optical Fiber Sensors: Applications, analysis and future trends," eds., J. Dakin and B. Culshaw (Artech House, Boston, 1997), Chap. 15.

J. D. C. Jones, and R. McBride, Optical fiber sensor technology: Devices and technology," ed., K. T. V. Grattan and B. T. Meggit, (Chapman & Hall, London, 1998), vol. 2, p. 117.

E. Tapanes, “Fibre optic sensing solutions for real-time pipeline integrity monitoring,” presented at the Australian Pipeline Industry Association National Convention (2001), http://www.iceweb.com.au/Newtech/FFT_Pipeline_Integrity_paper.pdf

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Distributed strain and temperature sensing over 50 km of SMF with 1 m spatial resolution employing BOTDA and optical pulse coding” Proc. SPIE 7503, PDP09 (2009)

J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed., (Springer, 2004), Chap. 15.

L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam, ed. (Springer, 2004), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hybrid sensor network with point and distributed optical sensors. The monitoring station includes the Brillouin subsystem and the point sensors header.

Fig. 2
Fig. 2

Measured optical spectrum for the four point sensors and the Brillouin + Raman amplified transmitted signal.

Fig. 3
Fig. 3

Measurement of Brillouin gain spectra along the fiber network. a) 3D representation. b) intensity plot representation.

Fig. 4
Fig. 4

Brillouin frequency shift distribution along the fiber.

Fig. 5
Fig. 5

Insertion losses present in sensors network.

Fig. 6
Fig. 6

Sensor’s frequency and amplitude responses (first and second column respectively) for the first and last vibration sensors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V R M S M i n = 0.22 m m / s R M S V R M S M a x = 650 m m / s R M S

Metrics