Abstract

We developed a universal, real-time uniform K-space sampling (Rt-UKSS) method for high-speed swept-source optical coherence tomography (SS-OCT). An external clock uniform in K-space was generated. The clock was synchronized with the zero-crossing time of an interferometric calibration signal and used as triggers for a high-speed data acquisition system in a point-by-point fashion, hence enabling uniform data sampling in K-space. Different from the numerical calibration algorithm commonly used in an SS-OCT system, the method reported here does not require over-sampling, thus greatly reducing the demand for digitization, data processing and storage speed. The Rt-UKSS method is adaptive and applicable to a generic SS-OCT system of a wide range of A-scan rates without special adjustment. We successfully implemented the Rt-UKSS method in an SS-OCT system based on a Fourier-domain mode-locked laser (FDML) of a 40-kHz scanning rate. Real-time imaging of biological tissues using such a system was demonstrated with a measured axial resolution of 9.3 μm and detection sensitivity greater than 120dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  4. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  6. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  7. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  8. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  9. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  10. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]

2008

2006

2005

2003

1997

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Biedermann, B. R.

Bouma, B. E.

Cable, A.

Cable, A. E.

Cense, B.

Chen, Y. L.

Chinn, S. R.

Choma, M. A.

de Boer, J. F.

Eigenwillig, C. M.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fujimoto, J. G.

Gorczynska, I.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Hsu, K.

Huber, R.

Izatt, J. A.

Jiang, J.

Jiang, J. Y.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Leitgeb, R.

Palte, G.

Park, B. H.

Pierce, M. C.

Potsaid, B.

Sarunic, M. V.

Srinivasan, V. J.

Swanson, E. A.

Taira, K.

Tearney, G. J.

Wojtkowski, M.

Yang, C. H.

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Schematic of external clock generator. (B) Illustration of the original MZI signal (blue line) and its quadrant signal after the broadband 90° phase shifter (red line). (C) Illustration of zero-crossing signals generated from the MZI and quadrant signals in (B). (D) External clock signal that combines the XOR gate output with a gap-filling dummy clock. The vertical dotted lines indicate the rising edges of the signals.

Fig. 2
Fig. 2

Schematic of a swept-source OCT imaging system equipped with the real-time linear K-space sampling method. BD: balanced detector; CIR: circulator; CL: collimating lens; DAQ: data acquisition; GV: galvanometer mirror; M: mirror; ND: neutral density filter; OC: optical coupler.

Fig. 3
Fig. 3

(A) MZI interference signal. The upper and lower insets show the MZI signal at the beginning (or end) and the center of an A-scan, respectively, indicating that the MZI signal frequency varies during wavelength scanning. (B) External clock signal during forward wavelength scanning with the FFP-TF driven by a 40 kHz sinusoidal wave. The insets show the duty ratio of the external clock keeps very close to 50% which is essential to keep the high-speed digitizer working properly and continuously.

Fig. 4
Fig. 4

(A) Point-spread function of an FDML-based SS-OCT system equipped with the real-time linear K-space sampling method. (B) Point-spread function versus imaging depth revealing no axial resolution degradation throughout the imaging depth of 2.5 mm.

Fig. 5
Fig. 5

Representative images acquired with an FDML-based SS-OCT system equipped with the real-time linear K-space sampling method. (A) Finger tip. (B) Finger nail fold.

Tables (1)

Tables Icon

Table 1 Comparison between real-time linear K-space sampling and numerical calibration

Metrics