Abstract

This study investigates, for the first time, a photoerasable and photorewritable spatially-tunable laser using a dye-doped cholesteric liquid crystal (DDCLC) with a photoisomerizable chiral dopant (AzoM). UV illumination via a photomask with a transmittance-gradient can create a pitch gradient in the cell such that the lasing wavelength can be spatially tuned over a wide band of 134nm. The pitch gradient is generated by the UV-irradiation-induced gradient of the cis-AzoM concentration and therefore the induced gradient of the cell HTP value, resulting in the spatial tunability of the laser. Furthermore, the laser has advantages of photoerasability and photorewritability. The spatial tunability of the laser can undergo more than 100 cycles of photoerasing and photorewriting processes without decay or damage.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
    [CrossRef]
  4. J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
    [CrossRef]
  5. P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21(15), 1138–1140 (1996).
    [CrossRef] [PubMed]
  6. R. W. Ziolkowski and T. Liang, “Design and characterization of a grating-assisted coupler enhanced by a photonic-band-gap structure for effective wavelength-division demultiplexing,” Opt. Lett. 22(13), 1033–1035 (1997).
    [CrossRef] [PubMed]
  7. T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).
  8. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [CrossRef] [PubMed]
  9. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  10. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
    [CrossRef]
  11. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [CrossRef]
  12. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [CrossRef]
  13. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
    [CrossRef]
  14. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
    [CrossRef]
  15. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
    [CrossRef]
  16. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
    [CrossRef]
  17. M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
    [CrossRef]
  18. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
    [CrossRef] [PubMed]
  19. J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
    [CrossRef]
  20. J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006).
    [CrossRef]

2009 (1)

2008 (1)

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[CrossRef]

2007 (1)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

2006 (3)

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006).
[CrossRef]

2005 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

2003 (3)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

2001 (1)

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Aalto, T.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Asano, T.

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Barberi, R.

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[CrossRef] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Chilaya, G.

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[CrossRef] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Choi, H.

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

De Santo, M. P.

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Fan, B.

Genack, A. Z.

Gimenez, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Gogna, P.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

Heimala, P.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Huang, Y.

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

Ishikawa, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

Jeong, M.-Y.

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kopp, V. I.

Kuitinen, M.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Leppilhalme, M.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Liang, T.

Liu, J.-H.

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006).
[CrossRef]

Loncar, M.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

Matranga, M. A.

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

Noda, S.

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Petriashvili, G.

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[CrossRef] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Pinol, M.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Qiu, Y.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Scherer, A.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Sonoyama, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

Takanishi, Y.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

Takezoe, H.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

Tervo, J.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Tran, P.

Turunen, J.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Vahimaa, P.

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Vithana, H. K. M.

Wang, C.-C.

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

Wang, Y.-K.

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

Wu, J. W.

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[CrossRef]

Wu, S.-T.

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, P.-C.

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006).
[CrossRef]

Yoshie, T.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[CrossRef]

Zhou, Y.

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

Ziolkowski, R. W.

Appl. Phys. Lett. (4)

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
[CrossRef]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
[CrossRef]

Liq. Cryst. (1)

J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
[CrossRef]

Opt. Commun. (1)

J. Tervo, M. Kuitinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppilhalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198(4-6), 265–272 (2001).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal Fibers: A New Class of Optical Waveguides,” Opt. Fiber Technol. 5(3), 305–330 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

J.-H. Liu and P.-C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (−)-menthyl groups,” Polymer (Guildf.) 47(14), 4925–4935 (2006).
[CrossRef]

Prog. Quantum Electron. (1)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369–416 (2003).
[CrossRef]

Science (2)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (1)

T. D. James, A. C. Greenwald, E. A. Johnson, W. A. Stevenson, J. A. Wollam, T. George, and E. W. Jones, “Nano-Structuredd Surfaces For Tuned Infrared Emission For Spectroscopic Applications,” Proc. SPIE Opt. 2000. Photonics West, San Jose, CA, 22–28. January (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for measuring lasing spectra of DDCLC cell at various positions of the cell. The DDCLC cell (cell gap: d) is fixed on a sample holder, which is removable on a translational stage, such that the incident single pumped pulse can excite the cell at various cell positions. The spectrometer probe is placed at a distance of l = 1cm behind the cell to receive lasing emission along the cell normal. PBS: polarizing beam splitter, λ/2: half-wave plate for 532nm.

Fig. 2
Fig. 2

(a) Pitch gradient in the AzoM-added DDCLC cell formed upon irradiation by one uniform UV beam with an intensity of 3mW/cm2 for 20min through a transmittance-gradational photomask. (b) Gradient of transmittance of UV light through the photomask from 0 to 100% as cell position changes from x = 0 to x = 40mm. Reflection images of one white beam from AzoM-added DDCLC cell (c) without and (d) with a pitch gradient.

Fig. 3
Fig. 3

Red-shifts of (a) measured CLCRB and (b) measured lasing signal at LWE as position of AzoM-added DDCLC cell varies from x = 6 to x = 34mm. The grey curve represents the fluorescence emission spectrum of the cell in the isotropic state.

Fig. 4
Fig. 4

(a) Two reversibly transformed isomeric structures of AzoM in rod-like trans- and bent cis-states and associated isomerization reactions. (b) Fluorescence emission (red curve) and absorption (blue curve) spectra of DDCLC cell in isotropic state. More of the fluorescence of the cell is emitted between 540 to 700nm.

Fig. 5
Fig. 5

(a)-(f) Lasing patterns with lasing wavelengths of 553 to 687 nm (green to deep red) at the LWE of the CLCRB obtained as pumping position of AzoM-added DDCLC cell increases from x = 6 to x = 34mm.

Fig. 6
Fig. 6

Photoerasibility and thermal relaxation of the pitch gradient and thus the associated spatial tunability of laser. A pitch gradient is pre-written in the cell by the UV-irradiation-gradient method, yielding a position-dependent wavelength distribution at the LWE of the measured CLCRB (black curves in (a) and (b)). (a) The wavelengths at the LWEs at all cell positions shift to a single value (black curve → red line) as the duration of irradiation of one uniform green beam with an intensity of 20mW/cm2 on the cell with a pitch gradient increases from 0 to 90s. (b) The wavelength at the LWE at each cell position slowly relaxes to the original value (black curve → red line) as the relaxation time increases from 0 to 38hr.

Metrics