Abstract

In this work a traveling-wave resonator device is proposed and experimentally demonstrated in silicon-on-insulator platform in which the spacing between its adjacent resonance modes can be tuned. This is achieved through the tuning of mutual coupling of two strongly coupled resonators. By incorporating metallic microheaters, tuning of the resonance-spacing in a range of 20% of the free-spectral-range (0.4nm) is experimentally demonstrated with 27mW power dissipation in the microheater. To the best of our knowledge this is the first demonstration of the tuning of resonance-spacing in an integrated traveling-wave-resonator. It is also numerically shown that these modes exhibit high field-enhancements which makes this device extremely useful for nonlinear optics and sensing applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  2. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
    [CrossRef] [PubMed]
  3. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  5. A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, and A. Adibi, “Optimization of Metallic Micro-Heaters for Reconfigurable Silicon Photonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThB4.
  6. M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent Wavelength Switching of Resonant Filters,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDA2.
  7. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007).
    [CrossRef] [PubMed]
  8. J. Magné, P. Giaccari, S. LaRochelle, J. Azaña, and L. R. Chen, “All-fiber comb filter with tunable free spectral range,” Opt. Lett. 30(16), 2062–2064 (2005).
    [CrossRef] [PubMed]
  9. Y. G. Han, X. Y. Dong, J. H. Lee, and S. B. Lee, “Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift,” Opt. Lett. 31(24), 3571–3573 (2006).
    [CrossRef] [PubMed]
  10. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  11. M. Soltani, S. Yegnanarayanan, Q. Li, and A Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” (accepted, IEEE J. Quantum Electron. (to appear)).
  12. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  13. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (3)

2006 (2)

2005 (1)

2004 (1)

Adibi, A

M. Soltani, S. Yegnanarayanan, Q. Li, and A Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” (accepted, IEEE J. Quantum Electron. (to appear)).

Adibi, A.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Azaña, J.

Chen, L.

Chen, L. R.

Dong, X. Y.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Foster, M. A.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Gaeta, A. L.

Giaccari, P.

Han, Y. G.

Huang, Y.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

LaRochelle, S.

Lee, J. H.

Lee, S. B.

Li, Q.

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, Q. Li, and A Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” (accepted, IEEE J. Quantum Electron. (to appear)).

Lipson, M.

Magné, J.

Mookherjea, S.

Paloczi, G.

Poon, J.

Scheuer, J.

Sherwood-Droz, N.

Soltani, M.

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Turner, A. C.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Yariv, A.

Yegnanarayanan, S.

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” (accepted, IEEE J. Quantum Electron. (to appear)).

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Other (3)

A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, and A. Adibi, “Optimization of Metallic Micro-Heaters for Reconfigurable Silicon Photonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThB4.

M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent Wavelength Switching of Resonant Filters,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDA2.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Structure of two identical TWRs coupled together through a general coupler: (b) and (c) show the structures of two TWRs coupled together through one and two symmetric DCs, respectively. (d) The normalized frequency splitting of the structures shown in (b) and (c) vs. power coupling coefficient.

Fig. 2
Fig. 2

(a), (b), and (c) show the transmission spectra of a single-point-coupled resonator for κ2 = 0, κ2 = 0.5, and κ2 = 1, respectively; coupled to an external bus waveguide. (d), (e), and (f) show the transmission spectra of a two-point-coupled resonator for κ2 = 0, κ2 = 0.5, and κ2 = 1, respectively. The length of each resonator is 245 µm with an intrinsic Q is 105.

Fig. 3
Fig. 3

Normalized frequency splitting versus the phase difference between the two arms of the interferometer coupling the two resonators in the two-point-coupled structure shown in Fig. 1(c). Numbers over the curves indicate the value of κ2 . In these simulations we change the phase difference between the two arms of the Mach-Zehnder resonator (Arm1 and Arm2 in Fig. 1(c)). All other parameters in these simulations are the same as those in the caption of Fig. 2.

Fig. 4
Fig. 4

Optical micrograph of the two-point-coupled resonator structure fabricated on SOI with integrated microheaters. H1, H2, H3, and H4 show the microheaters fabricated on top of the structure for thermal tuning.

Fig. 5
Fig. 5

(a) Normalized transmission spectrum of the coupled resonator structure shown in Fig. 4. (b) Normalized transmission spectra of the two coupled modes near λ = 1.601 µm for different power dissipations in heater H2 (Fig. 4). Horizontal axis is wavelength detuning with respect to the center of the two coupled modes. A wavelength offset is added to the data to compensate for the red-shift in the resonance wavelengths of the modes in the coupled-resonator structure.

Fig. 6
Fig. 6

Resonance wavelength spacing versus power dissipation in heater H2 for the structure shown in Fig. 4.

Fig. 7
Fig. 7

Intensity enhancement of even and odd supermodes in R1 (bottom resonator) and R2 (top resonator) as a function of the phase difference between the interferometer arms in Fig. 1(c). Dashed parts of each curve connects the last simulation data-point for which the odd and even modes could be resolved, to the final value at π phase-shift (uncoupled case).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

b ¯ = T a ¯ = e j θ c [ t c j κ c j κ c * t c * ] a ¯ ,
a ¯ = e j β L b ¯ ,
| T e j β L I | = 0 ,
e j 2 ϕ + 2 Re { t c } e j ϕ + 1 = 0 .
t c = t , κ c = k , θ c = 0 ,
t c = t 2 e j Δ ϕ M Z / 2 k 2 e j Δ ϕ M Z / 2 , κ c = 2 k t cos ( Δ ϕ M Z / 2 )       , θ c = ϕ M Z a v e ,

Metrics