Abstract

The application of a mode-locked quantum-dot Fabry-Perot (QD-FP) laser in a wavelength preserving all-optical 3R regenerator is demonstrated at 40 Gb/s. The 3R regenerator consists of a QD-FP laser for low-timing jitter clock recovery, cross-phase modulation based retiming, and self-phase modulation based reshaping. The performance of the all-optical 3R regenerator is assessed experimentally in terms of the Q-factor, timing jitter and bit-error ratio.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Renaudier, B. Lavigne, P. Gallion, and G.-H. Duan, “Study of phase-noise properties and timing jitter of 40-GHz all-optical clock recovery using self-pulsating semiconductor lasers,” J. Lightwave Technol. 24(10), 3734–3742 (2006).
    [CrossRef]
  2. G.-H. Duan, “Optical signal processing using InP-based quantum-dot semiconductor mode-locked lasers,” in Proc. Conference on Lasers and Electro-Optics, paper CMG3 (2008).
  3. J. Suzuki, T. Tanemura, and K. Kikuchi., “All-optical regeneration of 40-Gb/s low-Q signal using XPM-induced wavelength shift in highly-nonlinear fiber,” in Proc. Eur. Conf. Opt. Commun. paper Tu3.3.1 (2005).
  4. C. Ito, and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
    [CrossRef]
  5. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. Eur. Conf. Opt. Commun. 1, 475–476 (1998).
  6. X. Tang, J. C. Cartledge, A. Shen, A. Akrout, and G.-H. Duan, “Low timing jitter all-optical clock recovery for 40 Gb/s RZ- and NRZ-DPSK signals using a quantum-dot Fabry-Perot semiconductor laser,” Opt. Lett. 34(7), 899–901 (2009).
    [CrossRef] [PubMed]
  7. B. Lavigne, J. Renaudier, F. Lelarge, O. Legouezigou, H. Garaiah, and G.-H. Duan, “Polarization-insensitive low timing jitter and highly optical noise tolerant all-optical 40-GHz clock recovery using a bulk and a quantum-dots based self-pulsating laser cascade,” J. Lightwave Technol. 25(1), 170–176 (2007).
    [CrossRef]

2009

2008

C. Ito, and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[CrossRef]

2007

2006

1998

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. Eur. Conf. Opt. Commun. 1, 475–476 (1998).

Akrout, A.

Cartledge, J. C.

X. Tang, J. C. Cartledge, A. Shen, A. Akrout, and G.-H. Duan, “Low timing jitter all-optical clock recovery for 40 Gb/s RZ- and NRZ-DPSK signals using a quantum-dot Fabry-Perot semiconductor laser,” Opt. Lett. 34(7), 899–901 (2009).
[CrossRef] [PubMed]

C. Ito, and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[CrossRef]

Duan, G.-H.

Gallion, P.

Garaiah, H.

Ito, C.

C. Ito, and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[CrossRef]

Lavigne, B.

Legouezigou, O.

Lelarge, F.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. Eur. Conf. Opt. Commun. 1, 475–476 (1998).

Renaudier, J.

Shen, A.

Tang, X.

IEEE J. Sel. Top. Quantum Electron.

C. Ito, and J. C. Cartledge, “Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 616–624 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Proc. Eur. Conf. Opt. Commun.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. Eur. Conf. Opt. Commun. 1, 475–476 (1998).

Other

G.-H. Duan, “Optical signal processing using InP-based quantum-dot semiconductor mode-locked lasers,” in Proc. Conference on Lasers and Electro-Optics, paper CMG3 (2008).

J. Suzuki, T. Tanemura, and K. Kikuchi., “All-optical regeneration of 40-Gb/s low-Q signal using XPM-induced wavelength shift in highly-nonlinear fiber,” in Proc. Eur. Conf. Opt. Commun. paper Tu3.3.1 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for 40 Gb/s all-optical 3R regeneration. PC: polarization controller,

Fig. 2.
Fig. 2.

Timing jitter of the retimed signal (retiming stage only) and Q-factor of the reshaped signal (reshaping stage only) as a function of the filter offset. The OSNR of the input data signal is 22 dB (0.1 nm noise bandwidth).

Fig. 3.
Fig. 3.

Optical spectra measured with a resolution bandwith of 0.1 nm; (a) XPM broadening, (b) after retiming stage, (c) SPM broadening, and (d) after reshaping stage. Insets in (d) show the eye diagrams for the signal before (left) and after (right) the 3R regenerator with pulse widths of 10.1 ps and 9.2 ps, respectively (5 ps/div).

Fig. 4.
Fig. 4.

Q-factor improvement (in dB) of the regenerated signal with respect to the input signal. Insets show the eye diagrams for an input signal at a Q-factor of 16 dB and the corresponding regenerated signal (5 ps/div).

Fig. 5.
Fig. 5.

Timing jitter of the regenerated signal and the recovered clock signal as a function of the input signal timing jitter. Inset shows the optical trace for the recovered clock signal for an input jitter of 900 fs(10 ps/div).

Fig. 6.
Fig. 6.

Measured BER as a function of the input signal OSNR.

Metrics