Abstract

The electron transporting molecule tris(8-hydroxyquinoline) aluminum (Alq3) was added in low concentrations to a photorefractive polymer composite to provide trapping sites for electrons. This sample exhibited larger two-beam coupling gain, higher diffraction efficiency at lower voltages, and an increased dielectric breakdown strength compared to a control sample. The dynamics also revealed the presence of a competing grating, and a bipolar charge transport model is shown to fit the data. Overall, Alq3 improves the response time, efficiency, and breakdown voltage without a significant increase in absorption or loss of phase stability. This has applications for reflection displays and pulsed writing, where charge trapping and generation are major factors limiting the usefulness of photorefractive polymers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
    [CrossRef] [PubMed]
  2. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Photorefractive Polymers for Dynamic Holography,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008).
  3. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
    [CrossRef]
  4. J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004).
    [CrossRef] [PubMed]
  5. S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
    [CrossRef]
  6. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Thee-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
    [CrossRef] [PubMed]
  7. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  8. P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
    [CrossRef]
  9. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
    [CrossRef]
  10. M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
    [CrossRef]
  11. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
    [CrossRef]
  12. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
    [CrossRef]
  13. O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002).
    [CrossRef]
  14. J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
    [CrossRef] [PubMed]
  15. J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
    [CrossRef]
  16. Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
    [CrossRef]
  17. J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
    [CrossRef]
  18. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15(2), 901–904 (1998).
    [CrossRef]
  19. S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990).
    [CrossRef]
  20. S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, F. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett. 17(16), 1107–1109 (1992).
    [CrossRef] [PubMed]
  21. L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
    [CrossRef]
  22. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7(12), 2329–2338 (1990).
    [CrossRef]
  23. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
    [CrossRef]
  24. T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
    [CrossRef]

2009 (3)

M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Thee-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
[CrossRef] [PubMed]

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[CrossRef]

J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

2006 (1)

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

2004 (5)

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004).
[CrossRef] [PubMed]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

2002 (1)

O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002).
[CrossRef]

2000 (1)

L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
[CrossRef]

1998 (1)

1996 (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

1995 (1)

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

1994 (1)

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

1993 (1)

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

1992 (1)

1991 (2)

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

1990 (2)

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7(12), 2329–2338 (1990).
[CrossRef]

Barker, R. C.

Barlow, S.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Bashaw, M. C.

Bjorklund, G. C.

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Bolink, H. J.

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

Cammack, K.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Chen, J.

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Chen, X.

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Chen, Y.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Chen, Z.

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Christenson, C.

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Dube, R. R.

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Eralp, M.

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

Flores, D.

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Fuentes-Hernandez, C.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Fujii, A.

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Ghebremichael, F.

Gong, Q.

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Grunnet-Jepsen, A.

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Hache, F.

Hadziioannou, G.

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

Harvey, S.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Haufler, R.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Huang, M.

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

Jeong, K.

Kim, N.

J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
[CrossRef] [PubMed]

Kippelen, B.

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Köber, S.

Krasnikov, V. V.

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

Kroll, G.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Lee, C.

J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
[CrossRef] [PubMed]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Liu, Y.

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Ma, T.-P.

Malliaras, G. G.

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

Marder, S. R.

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Matray, T. J.

Matsumoto, K.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Meerholz, K.

M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Thee-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
[CrossRef] [PubMed]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Meredith, G.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004).
[CrossRef] [PubMed]

Miteva, M.

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990).
[CrossRef]

Moerner, W. E.

Morishima, C.

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Mroczkowski, S.

Ng, M.-K.

L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
[CrossRef]

Nolte, D. D.

Norwood, R. A.

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[CrossRef]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

Oh, J.-W.

J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
[CrossRef] [PubMed]

Ohmori, Y.

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Ohno, T. R.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002).
[CrossRef]

Peyghambarian, N.

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004).
[CrossRef] [PubMed]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Prauzner, J.

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Saint-Hilaire, P.

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Salvador, M.

Sandalphon, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Schülzgen, A.

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

Scott, J. C.

Silence, S. M.

Singer, K. D.

O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002).
[CrossRef]

Smalley, R.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tay, S.

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

Thomas, J.

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[CrossRef]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

J. G. Winiarz, F. Ghebremichael, J. Thomas, G. Meredith, and N. Peyghambarian, “Dynamic correction of a distorted image using a photorefractive polymeric composite,” Opt. Express 12(11), 2517–2528 (2004).
[CrossRef] [PubMed]

Thompson, C. L.

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Turek, J. J.

Twieg, R. J.

Uchida, M.

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Walker, G. A.

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Walsh, C. A.

Wang, L.

L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
[CrossRef]

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

Weaver, J.

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Wei, Q.

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Winiarz, J. G.

Yamamoto, M.

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Yoshino, K.

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Yu, L.

L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
[CrossRef]

Zhang, J.

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

Zhivkova, S.

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990).
[CrossRef]

Zhou, Q.

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

Adv. Mater. (1)

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. A. Walker, S. Barlow, B. Kippelen, G. Meredith, S. R. Marder, and N. Peyghambarian, “Bistriarylamine polymer-based composites for photorefractive applications,” Adv. Mater. 16(22), 2032–2036 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

J. Zhang, J. Chen, Y. Liu, M. Huang, Q. Wei, and Q. Gong, “Improvement on the photorefractive performance of a monolithic molecular material by introducing electron traps,” Appl. Phys. Lett. 85(8), 1323–1325 (2004).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66(9), 1038–1040 (1995).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, G. Li, B. Kippelen, S. R. Marder, G. Meredith, A. Schülzgen, and N. Peyghambarian, “Photorefractive polymer composite operating at the optical communication wavelength of 1550nm,” Appl. Phys. Lett. 85(20), 4561–4563 (2004).
[CrossRef]

J. Appl. Phys. (2)

O. Ostroverkhova and K. D. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92(4), 1727–1743 (2002).
[CrossRef]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68(7), 3099–3103 (1990).
[CrossRef]

J. Chem. Phys. (1)

J.-W. Oh, C. Lee, and N. Kim, “The effect of trap density on the space charge formation in polymeric photorefractive composites,” J. Chem. Phys. 130(13), 134909 (2009).
[CrossRef] [PubMed]

J. Disp. Technol. (1)

P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, and N. Peyghambarian, “An updatable holographic display for 3D visualization,” J. Disp. Technol. 4(4), 424–430 (2008).
[CrossRef]

J. Mater. Chem. (1)

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19(40), 7476–7489 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

Q. Wei, Y. Liu, Z. Chen, M. Huang, J. Zhang, Q. Gong, X. Chen, and Q. Zhou, “Improvement in the photorefractivity of a polymeric composite doped with the electron-injecting material Alq3,” J. Opt. A, Pure Appl. Opt. 6(9), 890–893 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode,” J. Phys. Condens. Matter 5(43), 7979–7986 (1993).
[CrossRef]

Nature (3)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “Polymer optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

L. Wang, M.-K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B 62(8), 4973–4984 (2000).
[CrossRef]

T. R. Ohno, Y. Chen, S. Harvey, G. Kroll, J. Weaver, R. Haufler, and R. Smalley, “C60 bonding and energy-level alignment on metal and seminconductor surfaces,” Phys. Rev. B 44(24), 13747–13755 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Other (1)

J. Thomas, R. A. Norwood, and N. Peyghambarian, “Photorefractive Polymers for Dynamic Holography,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TBC versus electric field for Samples A (circles) and B (squares). The horizontal dashed line indicates the absorption loss in each sample at 633nm.

Fig. 2
Fig. 2

Steady-state diffraction efficiency from DFWM measurements for Samples A (circles) and B(squares) at 532nm.

Fig. 3
Fig. 3

Transient diffraction efficiency for Samples A (black) and B (gray). The voltage was 70V/μm for Sample B and 60V/μm for Sample A, since it could not withstand higher fields. The writing beams were turned on at t = 0 and were turned off after 4 minutes.

Fig. 4
Fig. 4

Fit of the bipolar charge transport model to the transient efficiency data for Sample B. The gray curve is the data, the solid black curve is the best fit, and the dashed black curve is the best fit without the competing grating.

Fig. 5
Fig. 5

Approximate location of HOMO and LUMO levels of the components.

Fig. 6
Fig. 6

Steady-state photoconductivity of Samples A (circles) and B (squares) versus applied field at 532nm. The 3-5 times smaller conductivity is due to the trapping of photo-generated electrons in Alq3. The large increase in Sample A at about 50V/μm is likely due to the approaching breakdown.

Tables (1)

Tables Icon

Table 1 Weight percentage of each component in the samples studied

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E s c ( t ) = A + e Γ + t + A e Γ t
E S C r i s e ( t ) = E 1 [ ( 1 m e Γ 1 s t ( 1 m ) e Γ 1 l t ) + E 2 E 1 ( 1 e Γ 2 s t ) e i ϕ ]
E S C d e c a y ( t ) = E 1 [ m e Γ 1 s t + ( 1 m ) e Γ 1 l t + E 2 E 1 e Γ 2 s t e i ϕ ]
η ( t ) = sin 2 ( c 1 | E s c ( t ) E 1 | )

Metrics