Abstract

The monitoring photodiode is the key building block for an optical triplexer at wavelengths of 1310, 1490, and 1550 nanometers. The InGaAs/InP photodetectors were proposed and fabricated to be monolithically integrated with AlGaAs/GaAs optical waveguides using total internal reflection coupling. The metal coplanar waveguides on top of the polyimide planarization and passivation layer were then connected to illustrate the high speed monitoring functions. The full width half maximum of the temporal response and 3-dB bandwidth for the optical waveguide coupled photodiodes demonstrated 29.5 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodiode at 10 Gbit/s with 27-1 long pseudo-random bit sequence NRZ input data also showed error-free operation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lam, “Passive optical networks_ principles and practice”, Burlington, MA: Elsevier Inc., 2007, chapter 2.
  2. J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
    [CrossRef]
  3. V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
    [CrossRef]
  4. B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
    [CrossRef] [PubMed]
  5. W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
    [CrossRef]
  6. A. Umbach, “High-speed integrated photodetectors for 40 Gb/s applications,” Proc. SPIE 5246(1), 434–442 (2004).
    [CrossRef]
  7. S. M. Sze, and K. K. Ng, “Physics of semiconductor devices”, 3rd edition, Hoboken, New Jersey: John Wiley & Sons, Inc. 2007, Appendix F.
  8. I. Kaminow, and T. Li, “Optical fiber telecommunications”, IVA components, San Diego, California: Elsevier Science, 2002, chapter 16.
  9. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007).
    [CrossRef]
  10. D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
    [CrossRef]
  11. J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
    [CrossRef]
  12. S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
    [CrossRef]
  13. J.-M. Liu, “Photonic devices”, Cambridge CB2 2RU, UK: Cambridge University Press, 2005, chapter 14.
  14. B. Stephen, Alexander, “Optical communication receiver design”, Bellingham, Washington, SPIE-The International Society for Optical Engineering, 1997, chapter 4.
  15. J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
    [CrossRef]
  16. G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
    [CrossRef]
  17. S. Kück, H. Hofer, M. Antonio, and L. Ordoñez, “Cryogenic radiometer-based high accurate measurement of Ge and InGaAs trap detector responsivity”, CLEO Conference, p. CTuV6, 2006.
  18. G. T. Reed, “Silicon photonics – the state of the art”, West Sussex, England: John Wiley & Sons Ltd, 2008, chapter 2.
  19. B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
    [CrossRef]
  20. T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
    [CrossRef]
  21. D. M. Pozar, “Microwave engineering”, 2nd edition, New York: John Wiley & Sons, Inc. 1998, chapter 4.

2009 (3)

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
[CrossRef] [PubMed]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

2008 (1)

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

2007 (1)

2004 (1)

A. Umbach, “High-speed integrated photodetectors for 40 Gb/s applications,” Proc. SPIE 5246(1), 434–442 (2004).
[CrossRef]

2000 (1)

B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
[CrossRef]

1999 (1)

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

1997 (2)

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

1993 (1)

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

1991 (1)

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

1987 (1)

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Ade, R. W.

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

Agarwala, S.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

An, J.

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

Basilica, R. P.

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

Beard, W. T.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Berak, J. M.

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

Bossi, D. E.

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

Bowers, J. E.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Burrus, C. A.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Bušek, K.

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

Campbell, J. C.

Chen, Y. J.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

Cho, C. H.

Dagenais, M.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

El-Mikati, H. A.

B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
[CrossRef]

Frizzell, R. E.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Hryniewicz, J. V.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

Hsu, S. H.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

Hu, X.

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

Hüttel, I.

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

Hwang, S. H.

B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
[CrossRef] [PubMed]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Ishimura, E.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

Jerábek, V.

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

Johnson, F. G.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Kim, G. W.

Kimura, T.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

King, O.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Lee, C. H.

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

Lee, W.-J.

B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
[CrossRef] [PubMed]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Li, J.

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

Lim, J. W.

B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
[CrossRef] [PubMed]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Mizuguchi, K.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

Murotani, T.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

Obayya, S. S. A.

B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
[CrossRef]

Porkolab, G. A.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

Prajzler, V.

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

Rahman, B. M. A.

B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
[CrossRef]

Rho, B. S.

B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” Opt. Express 17(3), 1215–1221 (2009).
[CrossRef] [PubMed]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Seliger, P.

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

Stone, D. R.

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Tabatabaei, S. A.

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Tsugami, M.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

Uesugi, F.

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

Umbach, A.

A. Umbach, “High-speed integrated photodetectors for 40 Gb/s applications,” Proc. SPIE 5246(1), 434–442 (2004).
[CrossRef]

Wu, Y.

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

Electron. Lett. (1)

S. H. Hsu, O. King, F. G. Johnson, J. V. Hryniewicz, Y. J. Chen, and D. R. Stone, “InGaAs pin detector array integrated with AIGaAs/GaAs grating-demultiplexer by total internal reflector,” Electron. Lett. 35(15), 1248–1249 (1999).
[CrossRef]

IEE Proc., Optoelectron. (1)

B. M. A. Rahman, S. S. A. Obayya, and H. A. El-Mikati, “Minimisation of modal birefringence in semiconductor optical guided-wave devices,” IEE Proc., Optoelectron. 147(3), 151–156 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. E. Bossi, R. W. Ade, R. P. Basilica, and J. M. Berak, “Regrowth-free waveguide-integrated photode- tector with efficient total-internal-reflection coupling,” IEEE Photon. Technol. Lett. 5(2), 166–169 (1993).
[CrossRef]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

J. Cryst. Growth (1)

T. Kimura, T. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth 107(1-4), 827–831 (1991).
[CrossRef]

J. Lightwave Technol. (2)

J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007).
[CrossRef]

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C. H. Lee, and G. A. Porkolab, “Ultra-high vacuum chemically assisted ion beam system with a three grid ion source,” J. Vac. Sci. Technol. A 15(3), 616–621 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. A. Porkolab, Y. J. Chen, S. A. Tabatabaei, S. Agarwala, F. G. Johnson, O. King, M. Dagenais, R. E. Frizzell, W. T. Beard, and D. R. Stone, “Air-bridges, air-ramps, planarization, and encapsulation using pyrolytic photoresist in the fabrication on three-dimensional microstructures,” J. Vac. Sci. Technol. B 15(6), 1961–1965 (1997).
[CrossRef]

Opt. Eng. (1)

J. An, J. Li, J. Li, Y. Wu, and X. Hu, “Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating,” Opt. Eng. 48(1), 014601 (2009).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

V. Jeřábek, I. Hüttel, V. Prajzler, K. Bušek, and P. Seliger, “Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology,” Proc. SPIE 7138, 713814–1 (2008).
[CrossRef]

A. Umbach, “High-speed integrated photodetectors for 40 Gb/s applications,” Proc. SPIE 5246(1), 434–442 (2004).
[CrossRef]

Other (8)

S. M. Sze, and K. K. Ng, “Physics of semiconductor devices”, 3rd edition, Hoboken, New Jersey: John Wiley & Sons, Inc. 2007, Appendix F.

I. Kaminow, and T. Li, “Optical fiber telecommunications”, IVA components, San Diego, California: Elsevier Science, 2002, chapter 16.

C. Lam, “Passive optical networks_ principles and practice”, Burlington, MA: Elsevier Inc., 2007, chapter 2.

S. Kück, H. Hofer, M. Antonio, and L. Ordoñez, “Cryogenic radiometer-based high accurate measurement of Ge and InGaAs trap detector responsivity”, CLEO Conference, p. CTuV6, 2006.

G. T. Reed, “Silicon photonics – the state of the art”, West Sussex, England: John Wiley & Sons Ltd, 2008, chapter 2.

J.-M. Liu, “Photonic devices”, Cambridge CB2 2RU, UK: Cambridge University Press, 2005, chapter 14.

B. Stephen, Alexander, “Optical communication receiver design”, Bellingham, Washington, SPIE-The International Society for Optical Engineering, 1997, chapter 4.

D. M. Pozar, “Microwave engineering”, 2nd edition, New York: John Wiley & Sons, Inc. 1998, chapter 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

A AlGaAs/GaAs optical waveguide was coupled with InGaAs/InP p-i-n photodiodes by metal coplanar waveguide using total internal reflection mirror (Insets: SEM picture for the waveguide coupled photodiode and layer structures for photodetector and optical waveguide)

Fig. 2
Fig. 2

A side view of beam path for the waveguide coupled photodiode

Fig. 3
Fig. 3

Birefringence as a function of wavelengths for AlGaAs/GaAs optical waveguides with the same width (w) of 4 μm for different etch depths (h) of 1.5 μm, 1.6 μm, and 1.7 μm.

Fig. 4
Fig. 4

The dark current versus applied voltage on the detector and the inset SEM shows the mesa etched by ICP reactor with Pt as the mask.

Fig. 5
Fig. 5

Verniers for different layer alignment

Fig. 6
Fig. 6

Total-internal-reflector (TIR) etch profile on planar GaAs AXT wafer

Fig. 7
Fig. 7

High-speed photodetector interconnections - air bridges and polyimide

Fig. 8
Fig. 8

Responsivity of waveguide coupled photodiode versus light wavelength

Fig. 9
Fig. 9

The frequency response of a 30 by 30 μm square detector with 4-μm width waveguide at −10 V detector bias and 1543.5-nm wavelength (temporal response inset)

Fig. 10
Fig. 10

Pad capacitance comparison between air-bridge and polyimide coplanar waveguides, squares: polyimide coplanar waveguide, triangles: air-bridges with Si3N4 on n-doped substrate, circles: air-bridges on semi-insulating substrate

Fig. 11
Fig. 11

InGaAs photodiode bandwidth comparison between the substrates of InP and GaAs (14.2 and 11 GHz bandwidths, respectively, for InGaAs matched to InP substrate and InGaAs mismatched to GaAs substrate)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B = 1 ( 2 π R ε 0 ε r A l d ) 2 + ( l d 0.443 v p ) 2
η = 1 e α l d

Metrics