Abstract

We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes. Fiber losses, which are the lowest recorded so far for selenium based MOFs, are equal to the material losses, meaning that the process has no effect on the glass quality.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [CrossRef]
  2. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
    [CrossRef] [PubMed]
  3. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
    [CrossRef]
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).
  5. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  6. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [CrossRef] [PubMed]
  7. F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
    [CrossRef] [PubMed]
  8. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
    [CrossRef] [PubMed]
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  10. C. V. M. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, (2000).
  11. E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
    [CrossRef]
  12. F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
    [CrossRef]
  13. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
    [CrossRef] [PubMed]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  15. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
    [CrossRef]
  16. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  17. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  18. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [CrossRef] [PubMed]
  19. L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
    [CrossRef]
  20. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
    [CrossRef] [PubMed]
  21. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006).
    [CrossRef] [PubMed]
  22. D. Ležal, J. Pedlíková, J. Gurovič, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics Silikaty 40 (1996).
  23. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).
  24. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [CrossRef]
  25. E. Thomson, “The mechanical, thermal and optical properties of fused silica,” J. Franklin Inst. 200(3), 313–326 (1925).
    [CrossRef]
  26. E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
    [CrossRef]
  27. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
    [CrossRef] [PubMed]
  28. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
    [CrossRef]
  29. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
    [CrossRef]
  30. K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
    [CrossRef]

2009 (6)

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

2007 (1)

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

2006 (7)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[CrossRef] [PubMed]

Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006).
[CrossRef] [PubMed]

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (1)

2002 (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

2001 (1)

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

2000 (2)

C. V. M. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, (2000).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

1996 (1)

1925 (1)

E. Thomson, “The mechanical, thermal and optical properties of fused silica,” J. Franklin Inst. 200(3), 313–326 (1925).
[CrossRef]

Large, M. C. J.

Adam, J. L.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

Adam, J.-L.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

Atkin, D. M.

Austin, E.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Birks, T. A.

Bordas, F.

Boudebs, G.

Boussard, P.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Brilland, L.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Bureau, B.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Calvez, L.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Carlie, N.

Charpentier, F.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Chartier, T.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Chaudhari, C.

Cherukulappurath, S.

Churbanov, M. F.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Coulombier, Q.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

del, C.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Desevedavy, F.

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Désévédavy, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Eggleton, B.

Eggleton, B. J.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Fatome, J.

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

Fortier, C.

Fridlund, C. V. M.

C. V. M. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, (2000).

Fu, L.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

Gadret, G.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Guillevic, E.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Guilloux-Viry, M.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Guiyao, Z.

Hagihara, T.

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Hosokawa, Y.

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

Houizot, P.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

Humeau, A.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Kito, C.

Knight, J. C.

Kuhlmey, B.

Kuhlmey, B. T.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

Lantian, H.

Le Pierres, K.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Li, H.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

Li, K.

Liao, M.

Littler, I. C. M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Lucas, J.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Luther-Davies, B.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Maeda, S.

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

Matsumoto, M.

McPhedran, R.

Miao, R.

Millot, G.

Minakata, M.

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

Misumi, T.

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Monteville, A.

Moss, D.

Moss, D. J.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Nazabal, V.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Nguyen, T.

Nguyen, T. N.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

Ogusu, K.

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

Ohishi, Y.

Ollivier, S.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Pain, T.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Petit, L.

Petrovich, M. N.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

Pitois, S.

Plotnichenko, V. G.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

Qin, G.

Ren, L.

Renversez, G.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
[CrossRef] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
[CrossRef] [PubMed]

Richardson, D. J.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Richardson, K.

Rochette, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

Russell, P. S. J.

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Shokooh-Saremi, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Shuguang, L.

Smektala, F.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Snopatin, G. E.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Suzuki, T.

Ta’eed, V.

Ta'eed, V. G.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Thibaud, N.

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Thomson, E.

E. Thomson, “The mechanical, thermal and optical properties of fused silica,” J. Franklin Inst. 200(3), 313–326 (1925).
[CrossRef]

Traynor, N.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Troles, J.

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J.-L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

van Brakel, A.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

van Eijkelenborg, M. A.

Wang, L.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Yan, X.

Yinlan, R.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Zhang, X.

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Zhang, Y.

Zhao, W.

Zhiyun, H.

IEEE J. Sel. Top. Quant. Electron. (1)

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, R. Yinlan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quant. Electron. 12(3), 360–370 (2006).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

ESA Bull. (1)

C. V. M. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, (2000).

Fiber Integrated Opt. (1)

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Integrated Opt. 28(1), 11–26 (2009).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres (Glass and Ceramic Materials for Photonics),” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

J. Franklin Inst. (1)

E. Thomson, “The mechanical, thermal and optical properties of fused silica,” J. Franklin Inst. 200(3), 313–326 (1925).
[CrossRef]

J. Non-Cryst. Solids (4)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, “Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,” J. Non-Cryst. Solids 351(37-39), 3132–3138 (2005).
[CrossRef]

K. Ogusu, T. Hagihara, Y. Hosokawa, and M. Minakata, “Dependence of photo-oxidation on Ag(Cu)-content in Ag(Cu)-As2Se3 films,” J. Non-Cryst. Solids 353(11-12), 1216–1220 (2007).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. Optoelectron. Adv. Mat. (2)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. NGuyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mat. 8, 2148–2155 (2006).

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-Purity Glasses Based on Arsenic Chalcogenides,” J. Optoelectron. Adv. Mat. 3, 341–349 (2001).

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

E. Guillevic, X. Zhang, T. Pain, L. Calvez, J.-L. Adam, J. Lucas, M. Guilloux-Viry, S. Ollivier, and G. Gadret, “Optimization of chalcogenide glass in the As-Se-S system for automotive applications,” Opt. Mater. 31(11), 1688–1692 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Sens. Actuators B Chem. (1)

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem. 139(1), 30–34 (2009).
[CrossRef]

Sensor Letters (1)

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, P. Boussard, C. del, V. Nazabal, N. Thibaud, K. Le Pierres, G. Renversez, and B. Bureau, “CO2 Detection Using Microstructured Chalcogenide Fibers,” Sensor Letters 7, 745–749 (2009).
[CrossRef]

Other (1)

D. Ležal, J. Pedlíková, J. Gurovič, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics Silikaty 40 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of the silica mould. The glass is poured into the mould which is then removed by a HF treatment. The resulting preform is shown on the right picture.

Fig. 2
Fig. 2

a) SEM picture of a large core fiber. The core diameter is 13 µm. b) SEM picture of a small core fiber. The core diameter is around 2 µm. c) Optical microscopy picture of a suspended core fiber. The core diameter is 4 µm

Fig. 3
Fig. 3

a): Attenuation of the As2Se3 glass. b): Attenuation of the core of a multimode As2Se3 MOF.

Metrics