Abstract

In this paper, we demonstrate the efficient 1.3 um dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. With a plano-concave cavity, a maximum continuous-wave dual-wavelength output power of 5.92 W is obtained under an incident pump power of 20.5 W, giving a slope efficiency of 30.3% and an optical-optical conversion efficiency of 29.0%. With Co2+:LaMgAl11O19 crystal as the saturable absorber, the passively Q-switched dual-wavelength operation is achieved for the first time to our knowledge. The maximum passively Q-switched average output power is 226 mW, the minimum pulse width is 15 ns, and the highest pulse repetition rate is 133 kHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [CrossRef]
  2. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
    [CrossRef]
  3. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
    [CrossRef]
  4. Z. P. Wang, H. Liu, J. Y. Wang, Y. H. Lv, Y. H. Sang, R. J. Lan, H. H. Yu, X. G. Xu, and Z. S. Shao, “Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser,” Opt. Express 17(14), 12076–12081 (2009).
    [CrossRef] [PubMed]
  5. J. Marling, “1.05-1.44 um Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14(1), 56–62 (1978).
    [CrossRef]
  6. T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
    [CrossRef]
  7. M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
    [CrossRef] [PubMed]
  8. M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
    [CrossRef]
  9. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [CrossRef]
  10. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34- mum Nd:YVO(4) microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22(13), 991–993 (1997).
    [CrossRef] [PubMed]
  11. A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
    [CrossRef]
  12. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
    [CrossRef]
  13. F. Liu, J. He, B. Zhang, J. Xu, X. Dong, K. Yang, H. Xia, and H. Zhang, “Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34 microm with a V3+:YAG saturable absorber,” Opt. Express 16(16), 11759–11763 (2008).
    [CrossRef] [PubMed]
  14. H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
    [CrossRef]
  15. P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
    [CrossRef] [PubMed]
  16. H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
    [CrossRef]
  17. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
    [CrossRef]

2009 (3)

Z. P. Wang, H. Liu, J. Y. Wang, Y. H. Lv, Y. H. Sang, R. J. Lan, H. H. Yu, X. G. Xu, and Z. S. Shao, “Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser,” Opt. Express 17(14), 12076–12081 (2009).
[CrossRef] [PubMed]

T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
[CrossRef]

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

2008 (2)

2007 (2)

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

2006 (2)

P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
[CrossRef] [PubMed]

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

2005 (1)

2002 (2)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

2001 (1)

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[CrossRef]

1998 (1)

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

1997 (1)

1988 (1)

1978 (1)

J. Marling, “1.05-1.44 um Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14(1), 56–62 (1978).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Braun, B.

Capmany, J.

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

Chang, H. L.

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[CrossRef]

Chen, Y. F.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[CrossRef]

Conroy, R. S.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Damzen, M. J.

T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
[CrossRef]

Denisov, I. A.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Dong, X.

Fluck, R.

Gini, E.

He, J.

He, J. L.

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Hou, X.

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
[CrossRef] [PubMed]

Huang, H. T.

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Huang, K. F.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Huang, S. C.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Itoh, M.

Kaminskii, A. A.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Keller, U.

Lan, R. J.

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[CrossRef]

Li, A.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Li, P.

Li, Y.

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
[CrossRef] [PubMed]

Liao, Y. L.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Liu, F.

Liu, H.

Liu, S. C.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Lu, J.

Lv, Y. H.

Malyarevich, A. M.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Marling, J.

J. Marling, “1.05-1.44 um Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14(1), 56–62 (1978).
[CrossRef]

Martinez-pastor, J.

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

Melchior, H.

Mikhailov, V. P.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Minassian, A.

T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
[CrossRef]

Murai, T.

Ogilvy, H.

Okida, M.

Omatsu, T.

T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
[CrossRef]

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

Piper, J.

Qi, H.

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

Rico, M. L.

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

Risk, W. P.

Sang, Y. H.

Shao, Z. S.

Sinclair, B. D.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Su, K. W.

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

Sun, Y.

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
[CrossRef] [PubMed]

Takaichi, K.

Ueda, K.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Uematsu, T.

Valdes, J. L.

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

Wang, H. T.

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Wang, J.

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 mum Nd:YxGd(1-x)VO(4) laser with Co2+:LaMgAl(11)O(19) saturable absorber,” Opt. Express 14(17), 7730–7736 (2006).
[CrossRef] [PubMed]

Wang, J. Y.

Z. P. Wang, H. Liu, J. Y. Wang, Y. H. Lv, Y. H. Sang, R. J. Lan, H. H. Yu, X. G. Xu, and Z. S. Shao, “Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser,” Opt. Express 17(14), 12076–12081 (2009).
[CrossRef] [PubMed]

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Wang, Z. P.

Xia, H.

Xu, J.

Xu, X. G.

Yagi, H.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Yanagitani, T.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Yang, K.

Yatagai, T.

Yu, H. H.

Yumashev, K. V.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

Zhang, B.

Zhang, H.

Zhang, H. J.

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Zuo, C. H.

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

Appl. Phys. B (3)

A. Li, S. C. Liu, K. W. Su, Y. L. Liao, S. C. Huang, Y. F. Chen, and K. F. Huang, “InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3 um lasers,” Appl. Phys. B 84(3), 429–431 (2006).
[CrossRef]

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67(5), 555–558 (1998).
[CrossRef]

H. T. Huang, J. L. He, C. H. Zuo, H. J. Zhang, J. Y. Wang, and H. T. Wang, “Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm,” Appl. Phys. B 89(2-3), 319–321 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[CrossRef]

J. Marling, “1.05-1.44 um Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14(1), 56–62 (1978).
[CrossRef]

J. Alloy. Comp. (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[CrossRef]

Opt. Commun. (2)

T. Omatsu, A. Minassian, and M. J. Damzen, “Passive Q-switching of a diode-side-pumped Nd doped 1.3 um ceramic YAG bounce laser,” Opt. Commun. 282(24), 4784–4788 (2009).
[CrossRef]

M. L. Rico, J. L. Valdes, J. Martinez-pastor, and J. Capmany, “Continuous-wave dual-wavelength operation at 1062 and 1338 nm in Nd3+:YAl3(BO3)4 and observation of yellow laser light generation at 592 nm by their self-sum-frequency-mixing,” Opt. Commun. 282(8), 1619–1621 (2009).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, and J. Wang, “Co2+:LaMgAl11O19 saturable absorber Q-switch for a 1.319 um Nd3+:YAG laser,” Opt. Laser Technol. 39(4), 724–727 (2007).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of experimental setup

Fig. 2
Fig. 2

CW output power versus incident pump power

Fig. 3
Fig. 3

CW total and respective output power for output couplers with transmissions of 4.1%, 3.9% at 1319 nm and 1338 nm respectively

Fig. 4
Fig. 4

The measured threshold pump power versus ln(1/R)

Fig. 5
Fig. 5

Comparison of 1338 nm output power between single mode operation and dual-wavelength operation

Fig. 6
Fig. 6

Q-switched average output power versus incident pump power

Fig. 7
Fig. 7

Q-switched total and respective output power for the output coupler with transmissions of 12.5%, 12.0% at 1319 nm, 1338 nm

Fig. 8
Fig. 8

Variation of the pulse width versus incident pump power

Fig. 9
Fig. 9

Pulse profile of 15 ns

Fig. 10
Fig. 10

Variation of pulse repetition rate versus incident pump power

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 1 = P 1319 + P 1338
P 2 = T 1319 P 1319 + T 1338 P 1338
P 1319 = P 2 T 1338 P 1 T 1319 T 1338
P 1338 = P 1 P 1319
P t h 1319 P t h 1338 = ( σ 1338 σ 1319 ) T 1319 + L T 1338 + L
ln ( 1 T 0 2 ) ln ( 1 T 0 2 ) + ln ( 1 R ) + L σ g s σ A A s > γ 1 β

Metrics