Abstract

We present a detailed theoretical analysis which reveals a useful insight to understand the resonant dissipative behavior of 3D woodpile metallic photonic crystals in the spectral response. We observe that a small amount of structural parameter modifications can induce great flexibility to alter the properties of the absorption resonance with even an extremely narrow band width of ~13 nm. Analyzing the dispersive properties of the 3D woodpile metallic photonic crystals and performing thorough numerical simulations for the finite number of layers we found that the magnitude, band width, and tunability of enhanced absorption can be easily optimized, which can be of significance to design an efficient photonic crystal thermal emitter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  2. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999).
    [CrossRef]
  3. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
    [CrossRef]
  4. C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
    [CrossRef]
  5. T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26(7), 1450 (2009).
    [CrossRef]
  6. V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15(13), 8454–8464 (2007).
    [CrossRef] [PubMed]
  7. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
    [CrossRef]
  9. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
    [CrossRef]
  10. C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11(7), 746–754 (2003).
    [CrossRef] [PubMed]
  11. A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
    [CrossRef]
  12. G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
    [CrossRef]
  13. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
    [CrossRef]
  14. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
    [CrossRef]
  15. H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
    [CrossRef]
  16. D. Sullivan, Electromagnetic simulation using the FDTD method (IEEE Press New York, 2000).
  17. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn (Norwood, MA: Artech House, 2005).
  18. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  19. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [CrossRef] [PubMed]
  20. A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996).
    [CrossRef]
  21. J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
    [CrossRef]
  22. M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
    [CrossRef]

2009 (1)

2008 (4)

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

2007 (4)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15(13), 8454–8464 (2007).
[CrossRef] [PubMed]

2004 (2)

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

2003 (4)

C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11(7), 746–754 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

2002 (1)

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

2000 (2)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

1999 (1)

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999).
[CrossRef]

1996 (1)

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996).
[CrossRef]

Adeli, R.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Alizadeh, R.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Bur, J. A.

Chan, C. T.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

Chang, A. S. P.

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

Chang, H.-C.

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

Chen, M.

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

Constant, K.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

El-Kady, I.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Gu, B. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Halevi, P.

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996).
[CrossRef]

Han, S. E.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Ho, K. M.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Ho, K.-M.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

Joannopoulos, J.

John, S.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Johnson, S.

Juodkazis, K.

Juodkazis, S.

Juodkazyte, J.

Kim, Y.-S.

T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26(7), 1450 (2009).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

Kitaev, V.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Krokhin, A. A.

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996).
[CrossRef]

Kuo, C.-Y.

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

Lee, J. C. W.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

Lee, J.-H.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

Leung, W.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

Li, M.

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

Li, Z. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

Lin, S. Y.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

Lin, S.-Y.

T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26(7), 1450 (2009).
[CrossRef]

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Lu, S.-Y.

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

Lu, T.-M.

Luo, C.

Mahmoudi, A.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Misawa, H.

Mizeikis, V.

Moroz, A.

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999).
[CrossRef]

Norris, D. J.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Ozin, G. A.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Pendry, J.

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Sang, H. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Schulz-Dobrick, M.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Semnani, A.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Soukoulis, C. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Stein, A.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Tarozaite, R.

Tetreault, N.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Vekris, E.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Walsh, T. A.

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Wong, S.

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

Adv. Mater. (2)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19(6), 791–794 (2007).
[CrossRef]

J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. 20(17), 3244–3247 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

G. von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tetreault, S. Wong, V. Kitaev, and G. A. Ozin, “Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region,” Appl. Phys. Lett. 84(2), 224 (2004).
[CrossRef]

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

J. Appl. Phys. (1)

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Nature (1)

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (4)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53(3), 1205–1214 (1996).
[CrossRef]

M. Chen, S.-Y. Lin, H.-C. Chang, and A. S. P. Chang, “Physical origin of the resonant mode deep inside the stop band of a metallodielectric photonic crystal,” Phys. Rev. B 78(8), 085110 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83(25), 5274–5277 (1999).
[CrossRef]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Other (2)

D. Sullivan, Electromagnetic simulation using the FDTD method (IEEE Press New York, 2000).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn (Norwood, MA: Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated reflection, transmission and absorption spectra for a silver woodpile MPC with w = h = 300 nm, and a = 1 µm. The peak absorption of the MPC occurs at wavelength 1.36 µm where a high pass band exists. Inset: a schematic diagram of the silver woodpile MPC. (b) Calculated amplitude plot of the electric field inside the MPC at the band edge of wavelength 1.36 µm in the y-z plane across the 2nd and 4th layers. The strong field enhancement is observed in the 2nd layer near the metallic rod surfaces. (c) Calculated amplitude plot at the band edge across the 1st and 3rd layers in the x-z plane near the metallic rod edges of the 2nd layer. Field plots are on the same scale.

Fig. 2
Fig. 2

(a-d) Calculated band diagrams of silver woodpile MPCs in the 001 (X-Γ) direction for w = 0.18, 0.30, 0.42 and 0.48 µm, respectively, with a fixed rod height h = 0.6 µm. The lowest energy pass band continuously shifts to higher frequency and the band width decreases gradually for increasing w. (e) Extracted group velocity profile from the band diagrams.

Fig. 4
Fig. 4

(a) Calculated absorption and transmission spectra as a function of h. Inset: The linear relationship of the peak absorption wavelength and the rod thickness h. The curve follows the opposite trend to that of Fig. 3(a). (b) Calculated absorption, transmission and the FWHM of the absorption as a function of h.

Fig. 3
Fig. 3

(a) Calculated absolute absorption spectra for different values of w of the metallic rods in MPCs with the given value of a = 1 µm. Inset: The linear relation of the peak absorption wavelength and w. (b) Calculated absorption peaks, transmission peaks and the FWHM of the absorption as a function of w. Inset: The linear relation of the transmission peak position and w.

Fig. 5
Fig. 5

(a) Calculated intensity spectra of a gold woodpile MPC for different values of w. (b) Calculated intensity spectra for different values of h. Gold MPCs show more distinctive features than silver MPCs.

Metrics