Abstract

We estimate the dominating frequencies contributing to the Casimir energy in a cavity of meta- materials mimicking de Sitter space, by solving the eigenvalue problem of Maxwell equations. It turns out the dominating frequencies are the inverse of the size of the cavity, and the degeneracy of these frequencies also explains our previous result on the unusually large Casimir energy. Our result suggests that carrying out the experiment in laboratory is possible theoretically.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Accurately calculating high quality factor of whispering-gallery modes with boundary element method

Chang-Ling Zou, Yong Yang, Yun-Feng Xiao, Chun-Hua Dong, Zheng-Fu Han, and Guang-Can Guo
J. Opt. Soc. Am. B 26(11) 2050-2053 (2009)

Frequency converter implementing an optical analogue of the cosmological redshift

Vincent Ginis, Philippe Tassin, Ben Craps, and Irina Veretennicoff
Opt. Express 18(5) 5350-5355 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Bordag, The Casimir Effects 50 years later, (World Scientific Press, 1999).
  2. H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting Plates,” Indag. Math. 10, 261 (1948).
  3. T. H. Boyer, ”Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle,” Phys. Rev. 174, 1764–1776 (1968).
    [Crossref]
  4. R. Balian and B. Duplantier, “ElectromagneticWaves Near Perfect Conductors. 2. Casimir Effect,” Annals Phys. 112, 165–208 (1978).
    [Crossref]
  5. K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
    [Crossref]
  6. G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
    [Crossref]
  7. C. M. Bender and P. Hays, “Zero Point Energy Of Fields In A Finite Volume,” Phys. Rev. D 14, 2622–2632 (1976).
    [Crossref]
  8. K. A. Milton, “Semiclassical Electron Models: Casimir Selfstress In Dielectric And Conducting Balls,” Ann. Phys. 127, 49–61 (1980).
    [Crossref]
  9. K. A. Milton, “Fermionic Casimir Stress On A Spherical Bag,” Annals Phys. 150, 432–438 (1983).
    [Crossref]
  10. M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
    [Crossref]
  11. S. D. Odintsov, “Vilkovisky effective action in quantum gravity with matter,” Theor. Math. Phys. 82, 45–51 (1990).
    [Crossref]
  12. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
    [Crossref]
  13. S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).
  14. M. Li, R. X. Miao, and Y. Pang, “Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter,” arXiv:0910.3375 [hep-th].
  15. Miao Li, “A Model of holographic dark energy,” Phys. Lett. B 603, 1–5 (2004).
    [Crossref]
  16. Qing-Guo Huang and Miao Li, “The Holographic Dark Energy in a Non-flat Universe,” J. Cosmol. Astropart. Phys. 0408, 013 (2004).
    [Crossref]
  17. J. Plebanski, “Electromagnetic Waves in Gravitational Fields,” Phys. Rev. 118, 1396–1408 (1959).
    [Crossref]
  18. U. Leonhardt and T. Philbin, “General Relativity in Electrical Engineering”, New J.Phys. 8, 247 (2006).
    [Crossref]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  20. K. Niu, C. Song, and M. L. Ge, ”The geodesic form of light-ray trace in the inhomogeneous media,” Opt. Express 17(14), 11753–11767 (2009).
    [Crossref] [PubMed]
  21. R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  22. A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
    [Crossref] [PubMed]
  23. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
    [Crossref] [PubMed]
  24. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
    [Crossref] [PubMed]
  25. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
    [Crossref] [PubMed]
  26. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
    [Crossref] [PubMed]
  27. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].
  28. T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
    [Crossref]
  29. Q. Cheng and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159 [physics.optics].
  30. T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” arXiv:0911.4163 [physics.optics].
  31. L. H. Ford, “Quantum Vacuum Energy In General Relativity,” Phys. Rev. D 11, 3370–3377 (1975).
    [Crossref]
  32. E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
    [Crossref]
  33. S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–648 (1973).
    [Crossref]

2009 (1)

2006 (2)

U. Leonhardt and T. Philbin, “General Relativity in Electrical Engineering”, New J.Phys. 8, 247 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

2005 (1)

T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
[Crossref]

2004 (5)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Miao Li, “A Model of holographic dark energy,” Phys. Lett. B 603, 1–5 (2004).
[Crossref]

Qing-Guo Huang and Miao Li, “The Holographic Dark Energy in a Non-flat Universe,” J. Cosmol. Astropart. Phys. 0408, 013 (2004).
[Crossref]

2003 (2)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

1999 (1)

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

1998 (1)

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

1997 (1)

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

1990 (1)

S. D. Odintsov, “Vilkovisky effective action in quantum gravity with matter,” Theor. Math. Phys. 82, 45–51 (1990).
[Crossref]

1986 (1)

G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
[Crossref]

1983 (1)

K. A. Milton, “Fermionic Casimir Stress On A Spherical Bag,” Annals Phys. 150, 432–438 (1983).
[Crossref]

1980 (1)

K. A. Milton, “Semiclassical Electron Models: Casimir Selfstress In Dielectric And Conducting Balls,” Ann. Phys. 127, 49–61 (1980).
[Crossref]

1978 (2)

R. Balian and B. Duplantier, “ElectromagneticWaves Near Perfect Conductors. 2. Casimir Effect,” Annals Phys. 112, 165–208 (1978).
[Crossref]

K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
[Crossref]

1976 (1)

C. M. Bender and P. Hays, “Zero Point Energy Of Fields In A Finite Volume,” Phys. Rev. D 14, 2622–2632 (1976).
[Crossref]

1975 (1)

L. H. Ford, “Quantum Vacuum Energy In General Relativity,” Phys. Rev. D 11, 3370–3377 (1975).
[Crossref]

1973 (1)

S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–648 (1973).
[Crossref]

1968 (1)

T. H. Boyer, ”Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle,” Phys. Rev. 174, 1764–1776 (1968).
[Crossref]

1962 (1)

E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
[Crossref]

1959 (1)

J. Plebanski, “Electromagnetic Waves in Gravitational Fields,” Phys. Rev. 118, 1396–1408 (1959).
[Crossref]

1948 (1)

H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting Plates,” Indag. Math. 10, 261 (1948).

Aldering, G.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

Balian, R.

R. Balian and B. Duplantier, “ElectromagneticWaves Near Perfect Conductors. 2. Casimir Effect,” Annals Phys. 112, 165–208 (1978).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Bender, C. M.

C. M. Bender and P. Hays, “Zero Point Energy Of Fields In A Finite Volume,” Phys. Rev. D 14, 2622–2632 (1976).
[Crossref]

Bordag, M.

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

M. Bordag, The Casimir Effects 50 years later, (World Scientific Press, 1999).

Boyer, T. H.

T. H. Boyer, ”Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle,” Phys. Rev. 174, 1764–1776 (1968).
[Crossref]

Boyle, B. J.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Casimir, H. B. G.

H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting Plates,” Indag. Math. 10, 261 (1948).

Castro, P. G.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Challis, P.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Cheng, Q.

Q. Cheng and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159 [physics.optics].

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Clocchiattia, A.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Couch, W. J.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

Cui, T. J.

Q. Cheng and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159 [physics.optics].

DeRaad, L. L.

K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
[Crossref]

Deustua, S.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Diercks, A.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Duplantier, B.

R. Balian and B. Duplantier, “ElectromagneticWaves Near Perfect Conductors. 2. Casimir Effect,” Annals Phys. 112, 165–208 (1978).
[Crossref]

Elizalde, E.

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

Ellis, R. S.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Fabbro, S.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Filippenko, A. V.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Ford, L. H.

L. H. Ford, “Quantum Vacuum Energy In General Relativity,” Phys. Rev. D 11, 3370–3377 (1975).
[Crossref]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

Fruchter, A. S.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Garnavich, P. M.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Ge, M. L.

Gilliland, R. L.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Goldhaber, G.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Goobar, A.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Greiner, W.

G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
[Crossref]

Groom, D. E.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Hays, P.

C. M. Bender and P. Hays, “Zero Point Energy Of Fields In A Finite Volume,” Phys. Rev. D 14, 2622–2632 (1976).
[Crossref]

Hogan, C. J.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Hook, I. M.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Huang, Qing-Guo

Qing-Guo Huang and Miao Li, “The Holographic Dark Energy in a Non-flat Universe,” J. Cosmol. Astropart. Phys. 0408, 013 (2004).
[Crossref]

Irwin, M.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Jha, S.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Kim, A. G.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Kim, M. Y.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Kirshner, R. P.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Kirsten, K.

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

Knop, R. A.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Lakhtakia, A.

T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” arXiv:0911.4163 [physics.optics].

Lee, J. C.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Leibundgut, B.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Leonhardt, U.

U. Leonhardt and T. Philbin, “General Relativity in Electrical Engineering”, New J.Phys. 8, 247 (2006).
[Crossref]

Leseduarte, S.

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Li, M.

M. Li, R. X. Miao, and Y. Pang, “Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter,” arXiv:0910.3375 [hep-th].

Li, Miao

Qing-Guo Huang and Miao Li, “The Holographic Dark Energy in a Non-flat Universe,” J. Cosmol. Astropart. Phys. 0408, 013 (2004).
[Crossref]

Miao Li, “A Model of holographic dark energy,” Phys. Lett. B 603, 1–5 (2004).
[Crossref]

Lidman, C.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Mackay, T. G.

T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” arXiv:0911.4163 [physics.optics].

Matheson, T.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

McMahon, R. G.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Miao, R. X.

M. Li, R. X. Miao, and Y. Pang, “Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter,” arXiv:0910.3375 [hep-th].

Milton, K. A.

K. A. Milton, “Fermionic Casimir Stress On A Spherical Bag,” Annals Phys. 150, 432–438 (1983).
[Crossref]

K. A. Milton, “Semiclassical Electron Models: Casimir Selfstress In Dielectric And Conducting Balls,” Ann. Phys. 127, 49–61 (1980).
[Crossref]

K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
[Crossref]

Muller, B.

G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
[Crossref]

Newberg, H. J. M.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Newman, E.

E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
[Crossref]

Niu, K.

Nugent, P.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Nunes, N. J.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Odintsov, S. D.

S. D. Odintsov, “Vilkovisky effective action in quantum gravity with matter,” Theor. Math. Phys. 82, 45–51 (1990).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Pain, R.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Panagia, N.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Pang, Y.

M. Li, R. X. Miao, and Y. Pang, “Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter,” arXiv:0910.3375 [hep-th].

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Pennypacker, C. R.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Penrose, R.

E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
[Crossref]

Perlmuttter, S.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Philbin, T.

U. Leonhardt and T. Philbin, “General Relativity in Electrical Engineering”, New J.Phys. 8, 247 (2006).
[Crossref]

Phillips, M. M.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Plebanski, J.

J. Plebanski, “Electromagnetic Waves in Gravitational Fields,” Phys. Rev. 118, 1396–1408 (1959).
[Crossref]

Plunien, G.

G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
[Crossref]

Quimby, R.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Reiss, D.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Riess, A. G.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Ruiz-Lapuente, P.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Schaefer, B.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Schmidt, B. P.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Schommer, R. A.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Schwinger, J. S.

K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
[Crossref]

Setiawan, S.

T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shultz, S.

R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, R. C.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Song, C.

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

Spyromilio, J.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Stubbs, C.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Suntzeff, N. B.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Teukolsky, S. A.

S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–648 (1973).
[Crossref]

Tonry, J.

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Walton, N.

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Ann. Phys. (1)

K. A. Milton, “Semiclassical Electron Models: Casimir Selfstress In Dielectric And Conducting Balls,” Ann. Phys. 127, 49–61 (1980).
[Crossref]

Annals Phys. (3)

K. A. Milton, “Fermionic Casimir Stress On A Spherical Bag,” Annals Phys. 150, 432–438 (1983).
[Crossref]

R. Balian and B. Duplantier, “ElectromagneticWaves Near Perfect Conductors. 2. Casimir Effect,” Annals Phys. 112, 165–208 (1978).
[Crossref]

K. A. Milton, L. L. DeRaad, and J. S. Schwinger, “Casimir Selfstress On A Perfectly Conducting Spherical Shell,” Annals Phys. 115, 388–403 (1978).
[Crossref]

Astron. J. (1)

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998).
[Crossref]

Astrophys. J. (1)

S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635–648 (1973).
[Crossref]

Astrophys.J. (1)

S. Perlmuttter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J. Couch, ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” Astrophys.J. 517, 565–586 (1999).

Eur. Phys. J. C (1)

T. G. Mackay, S. Setiawan, and A. Lakhtakia, “Negative phase velocity of electromagnetic waves and the cosmological constant,” Eur. Phys. J. C 41S1, 1–4 (2005).
[Crossref]

Indag. Math. (1)

H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting Plates,” Indag. Math. 10, 261 (1948).

J. Cosmol. Astropart. Phys. (1)

Qing-Guo Huang and Miao Li, “The Holographic Dark Energy in a Non-flat Universe,” J. Cosmol. Astropart. Phys. 0408, 013 (2004).
[Crossref]

J. Math. Phys. (1)

E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3, 566–578 (1962).
[Crossref]

Nature (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, ”Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[Crossref] [PubMed]

New J.Phys. (1)

U. Leonhardt and T. Philbin, “General Relativity in Electrical Engineering”, New J.Phys. 8, 247 (2006).
[Crossref]

Opt. Express (1)

Phys. Lett. B (1)

Miao Li, “A Model of holographic dark energy,” Phys. Lett. B 603, 1–5 (2004).
[Crossref]

Phys. Rept. (1)

G. Plunien, B. Muller, and W. Greiner, “The Casimir Effect,” Phys. Rept. 134, 87–193 (1986).
[Crossref]

Phys. Rev. (2)

J. Plebanski, “Electromagnetic Waves in Gravitational Fields,” Phys. Rev. 118, 1396–1408 (1959).
[Crossref]

T. H. Boyer, ”Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle,” Phys. Rev. 174, 1764–1776 (1968).
[Crossref]

Phys. Rev. D (3)

C. M. Bender and P. Hays, “Zero Point Energy Of Fields In A Finite Volume,” Phys. Rev. D 14, 2622–2632 (1976).
[Crossref]

M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, “Casimir energies for massive fields in the bag,” Phys. Rev. D 56, 4896–4904 (1997).
[Crossref]

L. H. Ford, “Quantum Vacuum Energy In General Relativity,” Phys. Rev. D 11, 3370–3377 (1975).
[Crossref]

Phys. Rev. Lett. (1)

A. A. Houck, J. B. Brock, and I. L. Chuang, ”Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Science (5)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Shultz, ”Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, ”Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, ”Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Theor. Math. Phys. (1)

S. D. Odintsov, “Vilkovisky effective action in quantum gravity with matter,” Theor. Math. Phys. 82, 45–51 (1990).
[Crossref]

Other (5)

M. Li, R. X. Miao, and Y. Pang, “Casimir Energy, Holographic Dark Energy and Electromagnetic Metamaterial Mimicking de Sitter,” arXiv:0910.3375 [hep-th].

M. Bordag, The Casimir Effects 50 years later, (World Scientific Press, 1999).

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, ”Dielectric Optical Cloak,” [arXiv:0904.3602][physicsoptics].

Q. Cheng and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159 [physics.optics].

T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” arXiv:0911.4163 [physics.optics].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (36)

Equations on this page are rendered with MathJax. Learn more.

E c = 1 2 a 0 n = 0 n 3 a 0 3 2 0 ω 3 d ω ,
n = 0 F ( n ) 0 d t F ( t ) = 1 2 F ( 0 ) + i 0 d t F ( i t ) F ( it ) e 2 π t 1 ,
E C = 1 a 0 0 d t t 3 e 2 π t 1 .
ε r ˜ r ˜ = μ r ˜ r ˜ = L 2 sin 2 ( r ˜ / L ) cos ( r ˜ / L ) sin θ , ε θ θ = μ θ θ = sin θ cos ( r ˜ / L ) , ε φ φ = μ φ φ = 1 cos ( r ˜ / L ) sin θ .
ε i j = μ i j = 1 cos ( r ˜ / L ) ( δ i j ( L 2 r ˜ 2 sin 2 ( r ˜ / L ) 1 ) x i x j r ˜ 2 ) .
i E i = 0 , i H i = 0 ,
t E i ε i j k γ j H k = 0 , t H i + ε i j k γ j E k = 0 ,
E θ | r = L d = E φ r = L d = 0 .
F μ ν = 2 [ ϕ 1 ( n [ μ l ν ] + m [ μ m v ] * ) + ϕ 2 l [ μ m ν ] + ϕ 0 m [ μ * n ν ] ] + c . c ,
ϕ 0 = F μ ν l μ m ν , ϕ 1 = 1 2 F μ ν ( l μ n ν + m * μ m ν ) , ϕ 2 = F μ ν m * μ n ν ,
l μ = ( 1 1 r 2 / L 2 , 1 , 0 , 0 ) , m μ = 1 2 r ( 0 , 0 , 1 , i sin θ )
n μ = ( 1 2 , 1 r 2 / L 2 2 , 0 , 0 ) , m * μ = 1 2 r ( 0 , 0 , 1 , i sin θ ) .
ϕ 1 = e i w t Y l m ( θ , φ ) R ( r ) ,
[ 1 sin θ θ ( sin θ θ ) + φ 2 sin 2 θ + l ( l + 1 ) ] Y l m ( θ , φ ) = 0 ,
[ r 2 ( 1 r 2 L 2 ) r 2 + 4 r ( 1 3 r 2 2 L 2 ) r + r 2 w 2 ( 1 r 2 L 2 ) 6 r 2 L 2 + 2 l ( l + 1 ) ] R ( r ) = 0 .
R ( r ) = r 2 ( 1 + L r ) l 1 ( 1 + L r ) i w L / 2 ( 1 L r ) i w L / 2 F ( l + 1 , l + 1 + i w L , 2 l + 2 , 2 r L + r ) ,
i w H r = 1 r 2 sin θ ( θ E φ φ E θ ) , E θ | r = L d = E φ | r = L d = 0 ,
ϕ 1 | r = L d = 0 .
R ( r ) ~ Γ ( i w L ) Γ ( l + 1 i w L ) ( 1 r / L 1 + r / L ) i w L / 2 + c . c .
Re ( Γ ( i w L ) Γ ( l + 1 i w L ) ( 1 r / L 1 + r / L ) i w L / 2 ) | r = L d = 0 ,
Re ( Γ ( i w L ) Γ ( l + 1 i w L ) ( 1 r / L 1 + r / L ) i w L / 2 ) | r = L d 2 / 2 L = 0
sin [ ω L 2 In ( 4 L 2 / d 2 ) ] = 0 ω = 2 n π L In ( 4 L 2 / d 2 ) , n = 1,2 .
ω L = tan ( ω L 2 In ( 4 L 2 / d 2 ) ) .
Re [ Γ ( i ω L ) ( d l / 2 L ) i ω L ] = 0 .
E c ~ l c / 2 3 l c / 2 ( 2 l + 1 ) 1 / L ~ l c 2 / L = L / d 2 .
H r = 0 , ϕ 1 = 1 2 E r .
[ r ( r 2 sin θ E r ) + sin θ 1 r 2 L 2 θ E θ + 1 ( 1 r 2 L 2 ) sin θ φ E φ ] | r = L d 2 / 2 L = 0
r ( r 2 ϕ 1 ) | r = L d 2 / 2 L = r ( r 2 E r ) | r = L d 2 / 2 L = 0 .
Im ( Γ ( i w L ) Γ ( l + 1 i w L ) ( 1 r / L 1 + r / L ) i w L / 2 ) | r = L d 2 / 2 L = 0 .
cos [ ω L 2 In ( 4 L 2 / d 2 ) ] = 0 ω = ( 2 n + 1 ) π L In ( 4 L 2 / d 2 ) , n = 1,2 .
ω L = cot ( ω L 2 ln ( 4 L 2 / d 2 ) ) .
ω π / L In ( 4 L 2 / d 2 ) .
Im [ Γ ( i ω L ) ( d l / 2 L ) i ω L ] = 0 .
ω n π L In ( 4 L 2 / d 2 ) .
F c ~ 1 d 2 .
ε = μ ~ L d .

Metrics