Abstract

We experimentally measure the optical nonlinearities in hydrogenated-amorphous silicon (a-Si:H) waveguides through the transmission of ultra-short pulses. The measured two-photon absorption coefficient β is 4.1 cm/GW and we obtain a 3.5π nonlinear phase shift at 4.1 W coupled input power corresponding to a nonlinear refractive index n2 of 4.2∙10−13 cm2/W. The measured nonlinear coefficient γ = 2003 (W∙m)−1 is at least 5 times the value in crystalline silicon. The measured free carrier absorption coefficient σ = 1.9∙10−16 cm2 agrees with the values predicted from the Drude-Lorenz model. It is seen that a-Si:H exhibits enhanced nonlinear properties at 1550 nm and is a promising platform for nonlinear silicon photonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
    [CrossRef]
  2. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
    [CrossRef]
  3. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics, 2006. 3rd IEEE International Conference on, pp. 255–257 (2006)
  4. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
    [CrossRef] [PubMed]
  5. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [CrossRef] [PubMed]
  6. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [CrossRef]
  7. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [CrossRef]
  8. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
    [CrossRef]
  9. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
    [CrossRef] [PubMed]
  10. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
    [CrossRef] [PubMed]
  11. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
    [CrossRef]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [CrossRef] [PubMed]
  13. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
    [CrossRef] [PubMed]
  14. M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
    [CrossRef]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  16. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [CrossRef] [PubMed]
  17. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
    [CrossRef]
  18. P. Apiratikul, A. M. Rossi, and T. E. Murphy, “Nonlinearities in porous silicon optical waveguides at 1550 nm,” Opt. Express 17(5), 3396–3406 (2009).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, New York, Third Edition 2001)
  20. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  21. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Submitted for publication.
  22. R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991)
  23. R. Soref and B. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  24. P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
    [CrossRef]
  25. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75 (1993).
    [CrossRef]
  26. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (1)

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (3)

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[CrossRef] [PubMed]

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

2004 (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
[CrossRef] [PubMed]

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

2002 (2)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

1993 (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75 (1993).
[CrossRef]

1992 (2)

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Agrawal, G. P.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
[CrossRef]

L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Apiratikul, P.

Arakawa, Y.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bhadra, S. K.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
[CrossRef]

Boyraz, O.

Chen, X.

Cheng, J.

Chu, T.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Dong, P.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Dulkeith, E.

Elshaari, A. W.

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Submitted for publication.

Fainman, Y.

Fauchet, P.

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Feng, N. N.

Fukuda, H.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Hasama, T.

Hong, C. Y.

Hulin, D.

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Ikeda, K.

Indukuri, T.

Ishida, S.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Ishikawa, H.

Itabashi, S.

Jalali, B.

Kamei, T.

Kanicki, J.

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

Kawashima, H.

Kimerling, L.

Kintaka, K.

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Lipson, M.

Michel, J.

Mori, M.

Mourchid, A.

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Murphy, T. E.

Narayanan, K.

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Submitted for publication.

Nighan, W.

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Ogasawara, T.

Okano, M.

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Panoiu, N. C.

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Preble, S. F.

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Submitted for publication.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Rossi, A. M.

Roy, S.

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
[CrossRef]

Sakakibara, Y.

Salzman, J.

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

Shen, Y.

Shirane, M.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Shoji, T.

Shoji, Y.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75 (1993).
[CrossRef]

Suda, S.

Sun, R.

Takahashi, J.

Takahashi, M.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Tsuchizawa, T.

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Vanderhaghen, R.

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Vlasov, Y. A.

Watanabe, T.

Weiser, K.

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Yamada, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Yamada, K.

Yin, L.

Yokoyama, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Zelikson, M.

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5um pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

M. Zelikson, J. Salzman, K. Weiser, and J. Kanicki, “Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides,” Appl. Phys. Lett. 61(14), 1664–1666 (1992).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

J. Appl. Phys. (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

P. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-Optic Silicon-Nanowire Waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages,” Opt. Commun. 281(23), 5889–5893 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Proc. SPIE (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75 (1993).
[CrossRef]

Other (4)

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Submitted for publication.

R. A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge NY 1991)

D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics, 2006. 3rd IEEE International Conference on, pp. 255–257 (2006)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, New York, Third Edition 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up to measure optical nonlinearities in a-si:H waveguides. OPO: Optical Parametric Oscillator, OSA: Optical Spectrum analyzer

Fig. 2
Fig. 2

(a) The output power (black squares) as a function of coupled input power for a-Si:H waveguide. The blue line indicates the fit to the measured data based on solving the nonlinear equations. (b) Similar measurements performed on a SOI waveguide

Fig. 3
Fig. 3

Simulation fit to measured data using the two-photon absorption (TPA) model and two-state absorption (TSA) model in a-Si:H waveguide.

Fig. 4
Fig. 4

Measured spectral broadening in a-Si:H waveguides at different coupled powers due to self-phase modulation and simulation fits based on solving nonlinear Schrödinger equations.

Fig. 5
Fig. 5

Measured spectral broadening in SOI waveguides at different coupled powers due to self-phase modulation and simulation fits based on solving nonlinear Schrödinger equations.

Tables (1)

Tables Icon

Table 1 PECVD deposition parameters for a-Si:H

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u z + i β 2 2 2 u t 2 = ( i ω c n 2 β T P A 2 ) | u | 2 A e f f u N c 2 ( σ i ω c k c ) u α l 2 u
N c t = β T P A 2 h ω [ | u | 2 A e f f ] 2 N c τ c
σ = e 3 λ 2 4 π 2 c 3 ε 0 n 0 ( 1 m e 2 μ e + 1 m h 2 μ h )
F O M = n 2 β T P A λ

Metrics