Abstract

We propose a planar long-period grating filter based on coupling between the long-range surface plasmon mode and a cladding mode of a fully buried metal stripe waveguide. Using a 2.5-mm-long corrugation grating produced along the surface of an epoxy-clad aluminum stripe waveguide, we achieve a rejection band with a contrast of ~18 dB at the wavelength ~1500 nm, which can be tuned by ~25 nm with a temperature change of ~30°C. The experimental results agree closely with the simulation results. The filter could find applications in surface-plasmon-based integrated-optic circuits and biosensors.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings

Yiu Man Chu, Kin Seng Chiang, and Qing Liu
Appl. Opt. 45(12) 2755-2760 (2006)

SU-8 grating assisted intermodal interference in surface plasmon polariton waveguide

Lanting Ji, Guobing He, Yang Gao, Xiaoqiang Sun, Yunji Yi, Xibin Wang, Changming Chen, and Daming Zhang
Opt. Mater. Express 7(7) 2560-2570 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [Crossref]
  4. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [Crossref]
  5. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-3-977 .
    [Crossref] [PubMed]
  6. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
    [Crossref]
  7. S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
    [Crossref]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [Crossref]
  9. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [Crossref]
  10. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4674 .
    [Crossref] [PubMed]
  11. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006).
    [Crossref]
  12. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [Crossref]
  13. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
    [Crossref]
  14. J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith., “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47(21), 3892–3900 (2008).
    [Crossref] [PubMed]
  15. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
    [Crossref]
  16. E. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).
  17. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
    [Crossref]
  18. W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
    [Crossref]

2009 (2)

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[Crossref]

2008 (1)

2006 (3)

2005 (4)

2004 (2)

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

2003 (2)

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

1993 (1)

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Al-Bader, S. J.

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

Ballato, J.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Callender, C. L.

Charbonneau, R.

Chen, S.

Chiang, K. S.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

Chow, C. K.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Gagnon, G.

Honkanen, S.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

Jacob, S.

Jetté-Charbonneau, S.

Jiang, J.

Kim, J. T.

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Kjaer, K.

Lahoud, N.

Larsen, M. S.

Leosson, K.

Liu, Q.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

Lor, K. P.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Mattiussi, G.

Mattiussi, G. A.

Najafi, S. I.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

Nikolajsen, T.

Noad, J. P.

Oh, C.-H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Park, S.

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Rastogi, V.

Shin, J.-S.

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

Shin, S.-Y.

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

Smith, D. W.

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Tervonen, A.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

Wang, W. J.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

J. Appl. Phys. (1)

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74(3), 1529–1533 (1993).
[Crossref]

J. Lightwave Technol. (4)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Other (1)

E. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A planar long-period grating with pitch Λ and corrugation depth Δh formed on the surface of a dielectric-clad metal stripe waveguide.

Fig. 2
Fig. 2

Electric-field distributions of (a) the LRSP mode and (b) the fourth vertically confined cladding mode of a 15-nm thick and 2-μm wide Al stripe waveguide buried in an 11.5-μm thick epoxy cladding.

Fig. 3
Fig. 3

Mode spectrum of the fabricated Al stripe waveguide obtained from the output of the prism-coupler system.

Fig. 4
Fig. 4

(a) Microscopic image of the grating sample and (b) corrugation profile of a typical grating.

Fig. 5
Fig. 5

Normalized transmission spectra of the filter measured at 24.2, 34.5, and 46.7°C with the insets showing the output near-field images (taken at 24.2°C) at the resonance wavelength 1500 nm and an off-resonance wavelength 1536 nm.

Fig. 6
Fig. 6

Temperature dependence of the resonance wavelength of the grating.

Metrics