Abstract

We investigate higher order core-modes of solid-core photonic bandgap fibers experimentally and theoretically. We observe that for some wavelengths ranges the second mode is guided while the fundamental mode is not. We interpret this behavior in terms of the band diagrams and full numerical simulations, in good agreements with experiments. The sole guidance of the second, ring shaped modes observed at the edges of bandgaps could be of use for generation of vortex beams.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22(13), 961–962 (1997).
    [CrossRef] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [CrossRef] [PubMed]
  5. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002).
    [CrossRef]
  6. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
    [CrossRef]
  7. L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express 17(12), 10105–10112 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10105 .
    [CrossRef] [PubMed]
  8. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30(8), 830–832 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-8-830 .
    [CrossRef] [PubMed]
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8452 .
    [CrossRef] [PubMed]
  10. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-ThK3 .
  11. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-10-2261 .
    [CrossRef] [PubMed]
  12. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103 .
    [CrossRef] [PubMed]
  13. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18752 .
    [CrossRef]
  14. T. Taru, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber”, in 33rd European Conference and Exhibition on Optical Communication (Berlin, Germany, 2007), pp. 711.
  15. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9238 .
    [CrossRef] [PubMed]
  16. J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6(7), 667–670 (2004).
    [CrossRef]
  17. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, “Understanding Air-Core Photonic-Bandgap Fibers: Analogy to Conventional Fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
    [CrossRef]
  18. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17972 .
    [CrossRef] [PubMed]
  19. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-748 .
    [CrossRef] [PubMed]
  20. A. Argyros, “Guided modes and loss in Bragg fibres,” Opt. Express 10(24), 1411–1417 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-24-1411 .
    [PubMed]
  21. O. N. Egorova, D. A. Gaponov, N. A. Harchenko, A. F. Kosolapov, S. A. Letunov, A. D. Pryamikov, S. L. Semjonov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, and D. V. Kuksenkov, “All-Solid Photonic Bandgap Fiber with Large Mode Area and High Order Modes Suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuMM3 http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuMM3
  22. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-11-1310 .
    [CrossRef] [PubMed]
  23. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9483 .
    [CrossRef] [PubMed]
  24. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002).
    [CrossRef]
  25. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-18-1592 .
    [CrossRef]
  26. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5688 .
    [CrossRef] [PubMed]
  27. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
    [CrossRef]
  28. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5682 .
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

2006 (6)

T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-10-2261 .
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5682 .
[CrossRef] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5688 .
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103 .
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9238 .
[CrossRef] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9483 .
[CrossRef] [PubMed]

2005 (3)

2004 (3)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[CrossRef] [PubMed]

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6(7), 667–670 (2004).
[CrossRef]

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

2003 (2)

2002 (4)

2001 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1997 (1)

Abdolvand, A.

Abeeluck, A. K.

Alkeskjold, T. T.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Argyros, A.

Bigot, L.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bolger, J. A.

Botten, L. C.

Bouwmans, G.

Boyer, P.

Broeng, J.

Chen, J. S. Y.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

de Sterke, C.

Digonnet, M. J. F.

Douay, M.

Eggleton, B. J.

Engeness, T.

Euser, T. G.

Fan, S.

Fink, Y.

Fleming, S.

Fuerbach, A.

Gauza, S.

George, A. K.

Goto, R.

Guobin, R.

Headley, C.

Hedley, T. D.

Hermann, D. S.

Himeno, K.

Ibanescu, M.

Isomäki, A.

Jackson, S. D.

Jacobs, S.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Joannopoulos, J.

Johnson, S.

Kaminski, C. F.

Kim, H. K.

Kino, G. S.

Knight, J. C.

Kuhlmey, B.

Kuhlmey, B. T.

Laegsgaard, J.

Lægsgaard, J.

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

Le Rouge, A.

Li, J.

Litchinitser, N. M.

Lopez, F.

Luan, F.

Mägi, E. C.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Martijnde Sterke, C.

Maystre, D.

McPhedran, R.

McPhedran, R. C.

Moore, E. D.

Nold, J.

Nulsen, A.

Okhotnikov, O. G.

Pearce, G. J.

Provino, L.

Pureur, V.

L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express 17(12), 10105–10112 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10105 .
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Quiquempois, Y.

Renversez, G.

Riishede, J.

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6(7), 667–670 (2004).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

Sagrini, A.

Scharrer, M.

Shuisheng, J.

Shuqin, L.

Skorobogatiy, M.

Soljacic, M.

Steinvurzel, P.

Vanvincq, O.

Wang, A.

Weisberg, O.

White, T.

White, T. P.

Whyte, G.

Wu, S.-T.

Zhi, W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (11)

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-748 .
[CrossRef] [PubMed]

A. Argyros, “Guided modes and loss in Bragg fibres,” Opt. Express 10(24), 1411–1417 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-24-1411 .
[PubMed]

R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-11-1310 .
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8452 .
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5682 .
[CrossRef] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5688 .
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9238 .
[CrossRef] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9483 .
[CrossRef] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17972 .
[CrossRef] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18752 .
[CrossRef]

L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express 17(12), 10105–10112 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10105 .
[CrossRef] [PubMed]

Opt. Lett. (6)

Pure Appl. Opt. (1)

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6(7), 667–670 (2004).
[CrossRef]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Other (3)

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-ThK3 .

T. Taru, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber”, in 33rd European Conference and Exhibition on Optical Communication (Berlin, Germany, 2007), pp. 711.

O. N. Egorova, D. A. Gaponov, N. A. Harchenko, A. F. Kosolapov, S. A. Letunov, A. D. Pryamikov, S. L. Semjonov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, and D. V. Kuksenkov, “All-Solid Photonic Bandgap Fiber with Large Mode Area and High Order Modes Suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuMM3 http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuMM3

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross section of a 2D-SC-PBGF. The bright gray region represent the low refractive index background (nlow,), whereas dark gray circles are high index inclusions (nhigh). A typical transversal refractive index profile of the cladding is shown on the right.

Fig. 2
Fig. 2

Schematic representation of the experimental set-up used for the transmission measurements. The near field images of the guided modes are observed thanks to an IR camera by moving the mobile mirror. An optical image of the SC-PBGF is also shown in inset.

Fig. 3
Fig. 3

Transmission spectra of a 20 m (red curve) and a 20 cm (blue curve) piece of the 2D SC-PBGF. The 20 m long piece is wrapped on a 7.9 cm bend radius spool whereas the smallest one is kept straight. Inset: near field image of the fundamental mode observed at 1000 nm (PBG #3).

Fig. 4
Fig. 4

Near field images of the guided modes observed at 675 nm (PBG #5) (a), 850 nm (PBG #4) (b) and 1200 nm (PBG #3) (c). Pictures 2 and 3 are recorded with a polarizer (see Fig. 2). The fiber length is 20 m.

Fig. 5
Fig. 5

Plot of the band structure of an infinite triangular lattice constituted of high-index inclusions embedded in pure silica background, related the cladding of our 2D SC-PBGF (without material dispersion). The solid (dotted) black curve shows the effective index of the fundamental (LP11-like) guided core mode of the associated PBGF. Blue horizontal line represents the refractive index of pure silica (nlow).

Fig. 6
Fig. 6

Simulated spectral evolution of confinement losses (top) in dB/km and of the normalized effective area (bottom) for the LP01 (red curves) and LP11 (blue curves) core modes (logarithmic scale). The opto-geometrical parameters are identical to the fiber presented in Section 2. 7 rings of Ge-doped inclusions are used in the cladding (with material dispersion).

Metrics