Abstract

Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
    [CrossRef] [PubMed]
  2. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
    [CrossRef] [PubMed]
  3. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
    [CrossRef] [PubMed]
  4. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
    [CrossRef]
  5. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  6. S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
    [CrossRef] [PubMed]
  7. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
    [CrossRef] [PubMed]
  8. P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
    [CrossRef]
  9. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
    [CrossRef] [PubMed]
  10. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
    [CrossRef] [PubMed]
  11. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
    [CrossRef]
  12. J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
    [CrossRef] [PubMed]
  13. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
    [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  15. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  16. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
    [CrossRef]
  17. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
    [CrossRef] [PubMed]
  18. A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
    [CrossRef]
  19. Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
    [CrossRef] [PubMed]
  20. Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
    [CrossRef]
  21. Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
    [CrossRef]
  22. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
    [CrossRef]
  23. I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
    [CrossRef]
  24. A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
    [CrossRef]
  25. N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
    [CrossRef] [PubMed]
  26. I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
    [CrossRef]
  27. Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).
  28. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  29. W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]
  30. Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
    [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  32. L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
    [CrossRef]
  33. M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
    [CrossRef]
  34. M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
    [CrossRef]

2010 (1)

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

2009 (4)

N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
[CrossRef] [PubMed]

Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
[CrossRef]

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

2008 (7)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
[CrossRef] [PubMed]

S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
[CrossRef] [PubMed]

P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
[CrossRef]

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[CrossRef]

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

2007 (4)

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

2006 (4)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

2005 (1)

Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

2003 (4)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

2002 (1)

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

2001 (2)

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[CrossRef]

1999 (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

1998 (2)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1968 (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Aaron, J.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
[CrossRef] [PubMed]

Ahmadi, T. S.

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

Banhart, F.

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

Bohn, E.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Braun, M.

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

Chang, S. S.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Chen, C. D.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Chen, Y.-S.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Composto, R.

Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Dahmen, C.

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

Dellago, C.

Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
[CrossRef] [PubMed]

Ding, A. A.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

Emelianov, S.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Emelianov, S. Y.

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Fink, A.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Frey, W.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[CrossRef]

Gorelikov, I.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[CrossRef]

Gresillon, S.

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

Halas, N. J.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[CrossRef] [PubMed]

Hanlon, E. B.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Harrison, N.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

Hartland, G. V.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

Heitsch, A. T.

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

Homan, K.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Hu, M.

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

Ismail, K. Z.

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

Itzkan, I.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[CrossRef]

Jhan, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Joshia, P.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Khalavka, Y.

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

Kim, S.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Korgel, B. A.

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Kotaidis, V.

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

Kruizinga, P. P.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Kumar, S.

S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

Lai, W. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Larson, T.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Larson, T. A.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Li, P. C.

Liao, C. K.

Link, S.

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

Liu, Y.

Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
[CrossRef]

Liz-Marzan, L. M.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

Liz-Marzán, L. M.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Matsuura, N.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[CrossRef]

Mayers, B. T.

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

Mills, E.

Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
[CrossRef]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Milner, T. E.

Modell, M. D.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Mohamed, M. B.

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

Mulvaney, P.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Ohm, C.

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

Omura, N.

N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
[CrossRef] [PubMed]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Patel, R. E.

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

Perelman, L. T.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Perez Juste, J.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Perez-Juste, J.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

Petrova, H.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Plech, A.

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

Poe, C.

Qiu, L.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Ress, D.

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

Richards-Kortum, R.

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

Salgueirino-Maceira, V.

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
[CrossRef] [PubMed]

Shieh, D. B.

Shih, C. W.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

Smith, D. K.

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Soennichsen, C.

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

Sokolov, K.

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound imaging to monitor photothermal therapy - feasibility study,” Opt. Express 16(6), 3776–3785 (2008).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

Sokolov, K. V.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Stober, W.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Sun, L.

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Teitel, S.

Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
[CrossRef] [PubMed]

Travis, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Uechi, I.

N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
[CrossRef] [PubMed]

Vitkin, E.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

von Plessen, G.

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

Wang, C. R. C.

Wang, X.

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

Wang, Y. T.

Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
[CrossRef] [PubMed]

Wei, C. W.

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[CrossRef] [PubMed]

Wu, Y. N.

Xia, Y. N.

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

Yamada, S.

N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
[CrossRef] [PubMed]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Yin, Y. D.

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

Zhang, S. H.

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Adv. Mater. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13(18), 1389–1393 (2001).
[CrossRef]

Anal. Biochem. (1)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Anal. Sci. (1)

N. Omura, I. Uechi, and S. Yamada, “Comparison of plasmonic sensing between polymer- and silica-coated gold nanorods,” Anal. Sci. 25(2), 255–259 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[CrossRef] [PubMed]

Chem. Mater. (2)

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of ctab-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, “Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,” Chem. Phys. Lett. 343(1-2), 55–63 (2001).
[CrossRef]

M. Hu, X. Wang, G. V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, “Heat dissipation in gold-silica core-shell nanoparticles,” Chem. Phys. Lett. 372(5-6), 767–772 (2003).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

L. Qiu, T. A. Larson, D. K. Smith, E. Vitkin, S. H. Zhang, M. D. Modell, I. Itzkan, E. B. Hanlon, B. A. Korgel, K. V. Sokolov, and L. T. Perelman, “Single gold nanorod detection using confocal light absorption and scattering spectroscopy,” IEEE J. Sel. Top. Quant. 13(6), 1730–1738 (2007).
[CrossRef]

J. Biomed. Opt. (1)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Mater. Chem. (1)

Y. Liu, E. Mills, and R. Composto, “Tuning optical properties of gold nanorods in polymer films through thermal reshaping,” J. Mater. Chem. 19(18), 2704–2709 (2009).
[CrossRef]

J. Phys. Chem. B (4)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal reshaping of gold nanorods in micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

Y. Khalavka, C. Ohm, L. Sun, F. Banhart, and C. Soennichsen, “Enhanced thermal stability of gold and silver nanorods by thin surface layers,” J. Phys. Chem. C 111(35), 12886–12889 (2007).
[CrossRef]

J. Solid State Chem. (1)

A. T. Heitsch, D. K. Smith, R. E. Patel, D. Ress, and B. A. Korgel, “Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells,” J. Solid State Chem. 181(7), 1590–1599 (2008).
[CrossRef]

Langmuir (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Nano Lett. (6)

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Lett. 7(5), 1338–1343 (2007).
[CrossRef] [PubMed]

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Y. T. Wang, S. Teitel, and C. Dellago, “Surface-driven bulk reorganization of gold nanorods,” Nano Lett. 5(11), 2174–2178 (2005).
[CrossRef] [PubMed]

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Lett. 2(3), 183–186 (2002).
[CrossRef]

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[CrossRef]

Nat. Protoc. (1)

S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc. 3(2), 314–320 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Chem. Chem. Phys. (1)

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70(19), 195423 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Proc. SPIE (1)

Y.-S. Chen, P. P. Kruizinga, P. Joshia, S. Kim, K. Homan, K. Sokolov, W. Frey, and S. Emelianov, “On stability of molecular therapeutic agents for noninvasive photoacoustic and ultrasound image-guided photothermal therapy,” Proc. SPIE 7564, 7564–7561 (2010).

Ultrasound Med. Biol. (1)

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34(2), 299–308 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A block diagram of the ultrasound and photoacoustic imaging system used to evaluate the thermal stability of CTAB-coated, PEG-coated and silica-coated nanorods. (b) Close-up schematic illustration of the sample irradiated by a pulsed laser beam while photoacoustic transients were measured using the ultrasound transducer.

Fig. 2
Fig. 2

(a) Experimental and simulated extinction spectra of the PEG-coated gold nanorods, and silica-coated gold nanorods, where solid blue (──) and solid red (──) curves correspond to experimental data of PEG-coated and silica-coated gold nanorods. The dotted blue (—-), dotted red (—-), and dotted green (—-) curves correspond to FDTD calculated data of PEG-coated, porous silica-coated, and fused silica-coated gold nanorods, respectively. (b) TEM image illustrates one example of the silica-coated gold nanorods produced.

Fig. 3
Fig. 3

Measured UV-Vis extinction spectra of (a) CTAB-coated gold nanorods, (b) PEGylated (PEG-coated) gold nanorods, (c) 6 nm silica-coated gold nanorods, and (d) 20 nm silica-coated gold nanorods before and after laser irradiation with various fluences.

Fig. 4
Fig. 4

TEM images show the morphology evolutions of various gold nanorods before and after 300 pulses of 20mJ/cm2 laser irradiation. (a) and (b): PEG coated gold nanorods; (c) and (d): 6 nm silica-coated gold nanorods; (e) and (f): 20 nm silica-coated gold nanorods.

Fig. 5
Fig. 5

FDTD simulated absorption cross section spectra for unpolarized light for various gold nanoparticles. Ellipsoids have the same volume as the original nanorod and are labeled as the fraction of the long axis relative to the original nanorod length. Shortened silica-coated nanorods are labeled for their reduction at each end. For details see the text.

Fig. 6
Fig. 6

(a) The TEM image illustrates the 6 nm silica-coated gold nanorods after irradiated by 300 pulses of 20 mJ/cm2 laser light; the yellow circles indicate the nanorods which have hollow gaps between gold and silica. (b) The zoom-in view of the hollow gaps of a silica-coated gold nanorod. The image shows the gaps were formed in the tips and about 2 nm.

Fig. 7
Fig. 7

Photoacoustic signal intensity of PEG-coated gold nanorods (red scatters) and silica-coated gold nanorods (blue scatters) versus number of pulses with fluence (a) 4 mJ/cm2 and (b) 18 mJ/cm2.

Metrics