Abstract

We propose a rigorous design method of structured gratings for out of plane mode conversion, line focusing and manipulation of Surface Plasmon Polariton (SPP) waves. Employing a blazed grating to incorporate the directionality of SPP launch, and at the same time controlling grating depth and chirp to account for the radiation loss and diffraction angle, it was possible to achieve high efficiency and flexible SPP to freespace mode conversion. Devices with advanced functionalities, such as balanced SPP power splitter, and SPP wavelength demultiplexer are demonstrated with over 75% of power efficiencies at reasonable working distances of less than several wavelengths.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
    [CrossRef]
  3. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15(18), 11427–11432 (2007).
    [CrossRef] [PubMed]
  4. B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
    [CrossRef]
  5. Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, “Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides,” Opt. Express 17(21), 18852–18857 (2009).
    [CrossRef]
  6. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
    [CrossRef]
  7. S. V. Boriskina and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35(4), 538–540 (2010).
    [CrossRef] [PubMed]
  8. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  9. D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Mettalic grating based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
    [CrossRef]
  10. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
    [CrossRef] [PubMed]
  11. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [CrossRef]
  12. B. H. Kleemann, J. Ruoff, and R. Arnold, “Area-coded effective medium structures, a new type of grating design,” Opt. Lett. 30(13), 1617–1619 (2005).
    [CrossRef] [PubMed]
  13. H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
    [CrossRef]

2010 (1)

2009 (3)

2008 (1)

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

2007 (1)

2006 (1)

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

2005 (3)

2003 (2)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1991 (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[CrossRef]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Arnold, R.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

B. H. Kleemann, J. Ruoff, and R. Arnold, “Area-coded effective medium structures, a new type of grating design,” Opt. Lett. 30(13), 1617–1619 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Bai, B.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bonod, N.

Boriskina, S. V.

Bradbery, G. W.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[CrossRef]

Chernov, B.

Choi, D.

Dal Negro, L.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Dong, X.

Du, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elfstrom, H.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

Gao, H.

Han, J. H.

Herzig, H. P.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Jung, J.

Jung, Y. J.

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Kim, H.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Kim, S.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Kleemann, B. H.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

B. H. Kleemann, J. Ruoff, and R. Arnold, “Area-coded effective medium structures, a new type of grating design,” Opt. Lett. 30(13), 1617–1619 (2005).
[CrossRef] [PubMed]

Koo, S.

Kuittinen, M.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

Laukkanen, J.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Lee, B.

D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Mettalic grating based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Lee, I. M.

Li, L.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15(18), 11427–11432 (2007).
[CrossRef] [PubMed]

Lienau, C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Lim, Y.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Luo, X.

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Meng, X.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Nakagawa, W.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Park, D.

Park, J.

D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Mettalic grating based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Park, N.

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Popov, E.

Ruoff, J.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

B. H. Kleemann, J. Ruoff, and R. Arnold, “Area-coded effective medium structures, a new type of grating design,” Opt. Lett. 30(13), 1617–1619 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[CrossRef]

Sfez, T.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Shi, H.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Turunen, J.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Vallius, T.

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

Wang, C.

Yang, F.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[CrossRef]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Yu, L.

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Yu, S.

Appl. Phys. Lett. (1)

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface grating,” Appl. Phys. Lett. 92(1), 013103 (2008).
[CrossRef]

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Elfstrom, M. Kuittinen, T. Vallius, B. H. Kleemann, J. Ruoff, and R. Arnold, “Fabrication of blazed gratings by area-coded effective medium structures,” Opt. Commun. 266(2), 697–703 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li, and J. Turunen, “Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence,” Phys. Rev. B 80(3), 035407 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91(14), 143901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of SPP mode radiation into free space plane wave and (b) simulation results for magnetic field H z in a grating to diffract at 12 degrees (Λ = 1.24λ) ; Material = gold, and operating wavelength λ = 800nm

Fig. 2
Fig. 2

Illustration of (a) SPP coupling to small size detector or waveguide, (b) a chirped, blazed and adiabatically depth increasing grating structure

Fig. 3
Fig. 3

Simulation results for out-of plane focusing grating. Hz shown in (a), y directed Poynting vector magnitude in (b), efficiency as function of inclination blazing angle in (c), and focusing efficiency as function of focal length F(λ) in (d); Material = gold, F = 7λ(for (a), (b) and (c)) and operating wavelength = 800nm

Fig. 4
Fig. 4

Simulation results for SPP power splitter and wavelength demultiplexer: (a) Hz distribution for SPP power splitter, (b) normalized power distribution along the dotted line in (a), (c) Hz distribution for SPP wavelength demultiplexer, and (d) normalized power distribution along the dotted line in (c): The x axis in (b) and (d) are identical to the x axis values under the dotted blue lines in (a) and (c)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k S P P = k o sin θ + 2 π m / Λ                 m = ± 1 , 2 , 3....
Λ 1 = 2 π ( k S P P k o sin θ 1 ) 1
θ i = tan 1 ( ( ( Γ / 2 ) j = 1 i 1 Λ j ) / F )
Λ i = 2 π ( k S P P k o sin θ i ) 1
G i ( x ) = D i sin ( 2 π Λ i ( x j = 1 i 1 Λ j ) )           ,           j = 1 i Λ j > x > j = 1 i 1 Λ j

Metrics