Abstract

The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 μW and 19 μW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
    [CrossRef] [PubMed]
  2. . M. Lon?ar, T. Yoshie, K. Okamoto, Y. Qiu, J. Vu?kovi?, and A. Scherer, “Planar photonic crystal nanolasers (I): Porous cavity lasers,” IEICE T. Electron. E87C 3, 291 (2004).
  3. . E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  4. . H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
    [CrossRef]
  5. . D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
    [CrossRef]
  6. . B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
    [CrossRef]
  7. . M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308 (2006).
    [CrossRef] [PubMed]
  8. . M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75, 195313 (2007).
    [CrossRef]
  9. . S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  10. . M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975 (2009).
    [CrossRef] [PubMed]
  11. . M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
    [CrossRef]
  12. . J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
    [CrossRef]
  13. . P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  14. . M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
    [CrossRef] [PubMed]
  15. . Y. Gong and J. Vu?kovi?, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [CrossRef]
  16. . Y. Zhang, M. Khan, Y. Huang, J.-H. Ryou, P. Deotare, R. Dupuis, and M. Lon?ar, “Photonic crystal nanobeam lasers,” arxiv:1002.2380 (2010).
  17. . B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolicbeam photonic crystal laser,” Opt. Express 18, 5654 (2010).
    [CrossRef] [PubMed]
  18. . T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872 (2010).
    [CrossRef] [PubMed]
  19. . D. Englund and J. Vu?kovi?, “A direct analysis of photonic nanostructures,” Opt. Express 4, 3472 (2006).
    [CrossRef]
  20. . L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
    [CrossRef]
  21. . L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  22. . M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
    [CrossRef] [PubMed]
  23. . I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095 (2009).
    [CrossRef] [PubMed]
  24. . T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
    [CrossRef]
  25. . U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
    [CrossRef] [PubMed]
  26. . G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. dal Negro, and J. Vu?kovi?, “Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18, 5964 (2010).
    [CrossRef] [PubMed]
  27. . I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
    [CrossRef]

2010 (5)

2009 (5)

. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095 (2009).
[CrossRef] [PubMed]

. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975 (2009).
[CrossRef] [PubMed]

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

2007 (3)

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75, 195313 (2007).
[CrossRef]

2006 (4)

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

. D. Englund and J. Vu?kovi?, “A direct analysis of photonic nanostructures,” Opt. Express 4, 3472 (2006).
[CrossRef]

. H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
[CrossRef]

. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308 (2006).
[CrossRef] [PubMed]

2005 (1)

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

2003 (1)

. M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

1999 (1)

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

1997 (1)

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

1996 (1)

. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

1994 (1)

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

1946 (1)

. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Ahn, B.-H.

Alegre, T. P. M.

Altug, H.

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

. H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
[CrossRef]

Andreani, L. C.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

Babinec, T. M.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

Badolato, A.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bouwmeester, D.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Camacho, R.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

Chan, J.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

Choi, Y.-S.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Claudon, J.

dal Negro, L.

Dapkus, P. D.

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Deotare, P. B.

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Eichenfield, M.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

Ellis, B.

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

Englund, D.

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

. D. Englund and J. Vu?kovi?, “A direct analysis of photonic nanostructures,” Opt. Express 4, 3472 (2006).
[CrossRef]

. H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
[CrossRef]

Fan, S.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Ferrera, J.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Foresi, J. S.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Frank, I. W.

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Friedler, I.

Fushman, I.

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

Gong, Y.

Grard, J. M.

Haret, L.-D.

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

Hausmann, B. J. M.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

Hemmer, P. R.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

Hennessy, K.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hu, E. L.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hugonin, J. P.

Hwang, I.-K.

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Ippen, E. P.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Ishida, S.

Iwamoto, S.

Jahnke, F.

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

Joannopoulos, J. D.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Kang, J.-H.

Khan, M.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Kim, I.

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Kim, K.-S.

Kim, M.-K.

Kim, S.-H.

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Kim, S.-K.

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Kimerling, L. C.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Koch, S.

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

Kumagai, N.

Kuramochi, E.

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

Lalanne, P.

Lee, R. K.

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Lee, S. H.

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Lee, Y.-H.

. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolicbeam photonic crystal laser,” Opt. Express 18, 5654 (2010).
[CrossRef] [PubMed]

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Li, R.

Loncar, M.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

. M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Lu, J.

Maze, J. R.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

McCutcheon, M. W.

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Min, B.

Mohideen, U.

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

Nakata, Y.

Nienhuis, G.

. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Nomura, M.

Notomi, M.

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

O’Brien, J. D.

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Ota, Y.

Painter, O.

. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872 (2010).
[CrossRef] [PubMed]

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Perahia, R.

Petroff, P. M.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Purcell, E. M.

. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Qiu, Y. M.

. M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Rakher, M. T.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Sauvan, C.

Scherer, A.

. M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Shambat, G.

Slusher, R.E.

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

Smith, H. I.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Song, J.-H.

Steinmeyer, G.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Strauf, S.

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Tanabe, T.

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

Thoen, E. R.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Vahala, K. J.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

van Exter, M. P.

. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Villeneuve, P. R.

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Vuckovic, J.

. Y. Gong and J. Vu?kovi?, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. dal Negro, and J. Vu?kovi?, “Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18, 5964 (2010).
[CrossRef] [PubMed]

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

. D. Englund and J. Vu?kovi?, “A direct analysis of photonic nanostructures,” Opt. Express 4, 3472 (2006).
[CrossRef]

. H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
[CrossRef]

Watanabe, K.

Woerdman, J. P.

. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Yamamoto, Y.

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

Yang, J.-K.

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Yariv, A.

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Yerci, S.

Zhang, B.

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

Zhang, Y.

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

. M. Lon?ar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High Quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

. Y. Gong and J. Vu?kovi?, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. D. Englund, H. Altug, I. Fushman, and J. Vu?kovi?, “Efficient Terahertz Room-Temperature Photonic Crystal Nanocavity Laser,” Appl. Phys. Lett. 91, 071126 (2007).
[CrossRef]

. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vu?kovi?, “Dynamics of Quantum Dot Photonic Crystal Lasers,” Appl. Phys. Lett. 90, 151102 (2007).
[CrossRef]

. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Nat. Nanotech. (1)

. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lon?ar, “A diamond nanowire single-photon source,” Nat. Nanotech. 5, 195 (2010).
[CrossRef]

Nature (2)

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550 (2009).
[CrossRef] [PubMed]

. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides, ” Nature 390, 143 (1997).
[CrossRef]

Nature Physics (1)

. H. Altug, D. Englund, and J. Vu?kovi?, “Ultra-fast Photonic Crystal Nanolasers,” Nature Physics 2, 484 (2006).
[CrossRef]

Opt. Expr. (1)

. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Expr. 17, 21108 (2009).
[CrossRef]

Opt. Express (7)

Phys. Rev. (1)

. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A. (1)

. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, “Two simple expressions for the spontaneous emission factor ®, ” Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (1)

. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75, 195313 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

. U. Mohideen, R.E. Slusher, F. Jahnke, and S. Koch, “Semiconductor Microlaser Linewidths,” Phys. Rev. Lett. 73, 1785 (1994).
[CrossRef] [PubMed]

Science (1)

. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[CrossRef] [PubMed]

Other (3)

. M. Lon?ar, T. Yoshie, K. Okamoto, Y. Qiu, J. Vu?kovi?, and A. Scherer, “Planar photonic crystal nanolasers (I): Porous cavity lasers,” IEICE T. Electron. E87C 3, 291 (2004).

. Y. Zhang, M. Khan, Y. Huang, J.-H. Ryou, P. Deotare, R. Dupuis, and M. Lon?ar, “Photonic crystal nanobeam lasers,” arxiv:1002.2380 (2010).

. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The fabricated 1D nanobeam cavity. (b) The electric field intensity (∣E2) of the fundamental mode supported by the cavity.

Fig. 2.
Fig. 2.

Normalized PL spectra from representative cavities above lasing threshold (colored points). The PL spectrum from QDs in bulk (unpatterned film) is also shown (gray circles). The inset shows a zoomed-in cavity spectrum (pumped at 14 μW, below the lasing threshold) and its fit to a Lorentzian lineshape, corresponding to Q = 9,700.

Fig. 3.
Fig. 3.

The light-in light-out curves of a representative cavity, using (a) the 980 nm pump and (b) the 780 nm pump laser. Fits from the rate equations, and linear fits to the above threshold behavior are also shown. (c) The power dependence of the cavity wavelength with 780 nm and 980 nm pump. The red-shift at high pump powers indicates structure heating, and it kicks off sooner if the above-GaAs bandgap laser (780nm) is employed, as expected. The inset shows the cavity intensity for larger pump powers, where the beginning of saturation is observed toward the end of both traces. (d) The power dependence of the cavity linewidth with 780 nm and 980 nm pump. The pump power (horizontal axis) is measured before the objective in all cases.

Fig. 4.
Fig. 4.

The thresholds of various nanobeam lasers obtained by linear fit to the above threshold behavior, using both the 780 nm and the 980 nm pump. Threshold pump powers are measured before the objective lens in all cases. The Qs of various cavities (all below threshold) are also shown.

Fig. 5.
Fig. 5.

The light-in light-out curve for the same cavity as in Fig. 3(a)–3(b), pumped with a pulsed 830 nm laser, and by a CW 830 nm laser. The emission from a portion of the PL spectrum not coupled to the cavity is also shown. Pump powers are measured in front of the objective.

Fig. 6.
Fig. 6.

(a) Spectra from a nanobeam cavity as it is tuned by the movement of a fiber taper in close proximity to the cavity. The free space spectrum without the fiber taper is shown as a reference, and taper movement in the y- and z-directions (shown in Fig. 1) tunes the cavity mode by over 7 nm. The spectra for the tuned cavity are scaled for clarity. (b) The lasing thresholds of one cavity pumped from free space (normal incidence) and through the fiber taper, with collection through the fiber taper in both cases. The fiber taper position is varied to tune the lasing wavelengths. A reference case without any fiber tapers is also shown as the data point with the shortest wavelength. The inset shows the geometry simulated by FDTD, as well as the ∣E2 field of the cavity mode in the presence of the fiber taper.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dN dt = η L in h ̄ ω V a N ( F τ r + 1 τ nr ) ν g gP
dP dt = Γ ν g gP + Γ β N τ r P τ p ,

Metrics