Abstract

We present novel results on thermocavitation using a CW medium-power near infrared laser (λ=975 nm) focused into a saturated copper nitrate saline solution. Due to the large absorption coefficient at the laser wavelength, the solution can be heated to its superheat limit (Tsh~270-300°C). Superheated water undergoes explosive phase transition around Tsh producing approximately half-hemispheric bubbles (γ~0.5) in close contact with the substrate. We report the temporal dynamic of the cavitation bubble, which is much shorter than previously reported under similar conditions. It was found that the bubble radius and pressure wave amplitude emitted on bubble collapse decreases exponentially with the power laser. Thermocavitation can be a useful tool for the generation of ultrasonic waves and controlled ablation for use in high-resolution lithography.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Michel, and J. P. Franc, Fundamentals of Cavitation Springer 2004.
  2. C. E. Brennen, Cavitation and Bubble Dynamics Oxford University Press, USA (1995)
  3. F. R. Young, Cavitation, Imperial College Press, London (1999).
  4. L. Azar “Cavitation in Ultrasonic Cleaning and Cell Disruption” Controlled Environments February, 14–17 (2009).
  5. W. Lauterborn, ed., “Cavitation and inhomogeneities in underwater acoustics” Springer-Verlag (1980).
  6. R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964).
    [CrossRef]
  7. E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
    [CrossRef]
  8. W. Lauterborn, “High-speed photography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 21(1), 27–29 (1972).
    [CrossRef]
  9. C. A. Sacchi, “Laser-induced electric breakdown in water,” J. Opt. Soc. Am. B 8(2), 337–345 (1991).
    [CrossRef]
  10. P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
    [CrossRef]
  11. K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
    [CrossRef]
  12. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
    [CrossRef]
  13. C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
    [CrossRef]
  14. S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
    [CrossRef]
  15. S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990).
    [CrossRef]
  16. B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
    [CrossRef]
  17. J. C. Ramirez-San-Juan, et al., “Cavitation induced by CW lasers in liquids,” Proc. SPIE 7562–37, 1–5 (2010).
  18. V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).
  19. O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
    [CrossRef] [PubMed]
  20. P. Kafalas and A. P. Ferdinand., “Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse,” Appl. Opt. 12(1), 29–33 (1973).
    [CrossRef] [PubMed]
  21. V. P. Skripov, Metastable Liquids. John Wiley and Sons, New York (1974).
  22. A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
    [CrossRef]
  23. A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
    [CrossRef]
  24. Private communication from RP Acoustics,
  25. A. Y. Çengel, Heat transfer: A practical approach, Pag. 23 McGraw-Hill, New York 2003.

2004 (1)

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
[CrossRef]

1999 (1)

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

1998 (1)

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

1997 (1)

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

1993 (1)

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

1991 (1)

1990 (2)

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[CrossRef]

S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990).
[CrossRef]

1989 (1)

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

1988 (1)

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[CrossRef]

1973 (1)

1972 (1)

W. Lauterborn, “High-speed photography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 21(1), 27–29 (1972).
[CrossRef]

1970 (1)

V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).

1968 (1)

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

1966 (1)

E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
[CrossRef]

1964 (1)

R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964).
[CrossRef]

Barber, B. P.

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Barnes, P. A.

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

Brewer, R. G.

R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964).
[CrossRef]

Byun, K.-T.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
[CrossRef]

Carome, E. F.

E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
[CrossRef]

Clark, N. A.

E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
[CrossRef]

Do, N.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Ferdinand, A. P.

Geisler, R.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

Grigoropoulos, C. P.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Hammer, D. X.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Hiller, R. A.

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Kafalas, P.

Karng, S. W.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
[CrossRef]

Kurz, T.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

Kwak, H.-Y.

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
[CrossRef]

Lauterborn, W.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[CrossRef]

W. Lauterborn, “High-speed photography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 21(1), 27–29 (1972).
[CrossRef]

Leiderer, P.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Leung, W. P.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Lijfstedt, R.

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Lindau, O.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

Moeller, C. E.

E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
[CrossRef]

Noack, J.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Noojin, G. D.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Ohl, C. D.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

Park, H. K.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Pavlov, P. A.

V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).

Poon, C. C.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Putterman, S. J.

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Rastopov, S. F.

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[CrossRef]

S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990).
[CrossRef]

Rieckhoff, K. E.

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964).
[CrossRef]

Rockwell, B. A.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Sacchi, C. A.

Skripov, V. P.

V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).

Sukhodol’sky, A. T.

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[CrossRef]

Sukhodolsky, A. T.

S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990).
[CrossRef]

Tam, A. C.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Timm, R.

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

Vogel, A.

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[CrossRef]

Weninger, K. R.

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Yavas, O.

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Lauterborn, “High-speed photography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 21(1), 27–29 (1972).
[CrossRef]

P. A. Barnes and K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13(8), 282–284 (1968).
[CrossRef]

High Temp. (USSR) (1)

V. P. Skripov and P. A. Pavlov, “Explosive boiling of liquids and fluctuation nucleus formation,” High Temp. (USSR) 8, 782–787 (1970).

J. Acoust. Soc. Am. (2)

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near a solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[CrossRef]

E. F. Carome, C. E. Moeller, and N. A. Clark, “Intense Ruby-Laser-Induced Acoustic Impulses in Liquids,” J. Acoust. Soc. Am. 40(6), 1462–1466 (1966).
[CrossRef]

J. Appl. Phys. (1)

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

J. Fluid Mech. (1)

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K.-T. Byun, H.-Y. Kwak, and S. W. Karng, “Bubble Evolution and Radiation Mechanism for Laser-Induced Collapsing Bubble in Water,” Jpn. J. Appl. Phys. 43(No. 9A), 6364–6370 (2004).
[CrossRef]

Philos. Trans. R. Soc. Lond. A (1)

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminiscence,” Philos. Trans. R. Soc. Lond. A 357(1751), 269–294 (1999).
[CrossRef]

Phys. Lett. A (1)

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[CrossRef]

Phys. Rep. (1)

B. P. Barber, R. A. Hiller, R. Lijfstedt, S. J. Putterman, and K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281(2), 65–143 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

R. G. Brewer and K. E. Rieckhoff, “Stimulated Brillouin scattering in liquids,” Phys. Rev. Lett. 13(11), 334–336 (1964).
[CrossRef]

O. Yavas, P. Leiderer, H. K. Park, C. P. Grigoropoulos, C. C. Poon, W. P. Leung, N. Do, and A. C. Tam, “Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating,” Phys. Rev. Lett. 70(12), 1830–1833 (1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. F. Rastopov and A. T. Sukhodolsky, “Sound generation by thermocavitation induced CW-laser in solutions,” Proc. SPIE 1440, 127–134 (1990).
[CrossRef]

Other (9)

J. C. Ramirez-San-Juan, et al., “Cavitation induced by CW lasers in liquids,” Proc. SPIE 7562–37, 1–5 (2010).

J. M. Michel, and J. P. Franc, Fundamentals of Cavitation Springer 2004.

C. E. Brennen, Cavitation and Bubble Dynamics Oxford University Press, USA (1995)

F. R. Young, Cavitation, Imperial College Press, London (1999).

L. Azar “Cavitation in Ultrasonic Cleaning and Cell Disruption” Controlled Environments February, 14–17 (2009).

W. Lauterborn, ed., “Cavitation and inhomogeneities in underwater acoustics” Springer-Verlag (1980).

V. P. Skripov, Metastable Liquids. John Wiley and Sons, New York (1974).

Private communication from RP Acoustics,

A. Y. Çengel, Heat transfer: A practical approach, Pag. 23 McGraw-Hill, New York 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

( a) Experimental setup used for the generation and analysis of single bubble cavitation. PG is a pulse-delay generator, OS is digital oscilloscope and PD is a fast photodetector; (b) temperature distribution of a 119 mW focused beam inside the solution. The hottest (300°C) region is located ~20 µm above the entrance wall; (c) shadowgram of the hot region produced by a focused beam of power 119 mW just before cavitation takes place.

Fig. 2
Fig. 2

Cavitation time as function of the beam power. Solid line represents a fit to an exponential decay function

Fig. 3
Fig. 3

(a) Representative traces of the square root of the light scattered by the bubble (thick magenta line), bubble’s radius (blue circles) obtained from the streak camera and pressure wave generated at the collapse of the bubble (indicated by the black arrow) for Pmax=119 mW. Note that the bubble radius measured by the streak camera matches the square root of the scattered signal only during expansion. (b) Velocity of the bubble wall for Pthr=69 and Pmax=119 mW. The inset shows a typical snap shot of the bubble near its maximum radius for top view (left) and side view (right).

Fig. 4
Fig. 4

(a) Typical temporal profile of the pressure pulse produced by the bubble collapse at laser power of 119 mW and (b) amplitude of the peak pressure (blue circles) and bubble radius (red squares) as function of the beam power.

Fig. 5
Fig. 5

Pressure wave amplitude as function of propagation distance for a power of 119 mW. The pressure decays as r−1, as indicated by the red line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ C T t + ( k T ) = Q ,

Metrics