K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).

[CrossRef]
[PubMed]

D. Bryce and J. Autschbach, “Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors. comparison with experiment for diatomic alkali metal halides,” Can. J. Chem. 87(7), 927–941 (2009).

[CrossRef]

J. Autschbach, “Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions,” Chem. Phys. Chem. 10(11), 1757–1760 (2009).

[CrossRef]
[PubMed]

A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007).

[CrossRef]
[PubMed]

K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007).

[CrossRef]

A. Ye and J. Autschbach, “Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 125(23), 234101 (2006).

[CrossRef]
[PubMed]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

A. Dreuw and M. Head-Gordon, “Single-reference ab initio methods for the calculation of excited states of large molecules,” Chem. Rev. 105(11), 4009–4037 (2005).

[CrossRef]
[PubMed]

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).

[CrossRef]

S. Grimme and M. Parac, “Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems,” ChemPhysChem 4(3), 292–295 (2003).

[CrossRef]
[PubMed]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110(13), 6158 (1999).

[CrossRef]

I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998).

[CrossRef]

Ch. Bosshard, “Cascading of second-order nonlinearities in polar materials,” Adv. Mater. 8(5), 385–397 (1996).

[CrossRef]

J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996).

[CrossRef]

I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996).

[CrossRef]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).

[CrossRef]
[PubMed]

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).

[CrossRef]

K. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).

[CrossRef]

B. Bedeaux and N. Bloembergen, “On the relation between microscopic and microscopic nonlinear susceptibilities,” Physica 69(1), 57–66 (1973).

[CrossRef]

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110(13), 6158 (1999).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996).

[CrossRef]

I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998).

[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).

[CrossRef]
[PubMed]

J. Autschbach, “Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions,” Chem. Phys. Chem. 10(11), 1757–1760 (2009).

[CrossRef]
[PubMed]

D. Bryce and J. Autschbach, “Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors. comparison with experiment for diatomic alkali metal halides,” Can. J. Chem. 87(7), 927–941 (2009).

[CrossRef]

A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007).

[CrossRef]
[PubMed]

A. Ye and J. Autschbach, “Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 125(23), 234101 (2006).

[CrossRef]
[PubMed]

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110(13), 6158 (1999).

[CrossRef]

B. Bedeaux and N. Bloembergen, “On the relation between microscopic and microscopic nonlinear susceptibilities,” Physica 69(1), 57–66 (1973).

[CrossRef]

B. Bedeaux and N. Bloembergen, “On the relation between microscopic and microscopic nonlinear susceptibilities,” Physica 69(1), 57–66 (1973).

[CrossRef]

Ch. Bosshard, “Cascading of second-order nonlinearities in polar materials,” Adv. Mater. 8(5), 385–397 (1996).

[CrossRef]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).

[CrossRef]
[PubMed]

K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007).

[CrossRef]

D. Bryce and J. Autschbach, “Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors. comparison with experiment for diatomic alkali metal halides,” Can. J. Chem. 87(7), 927–941 (2009).

[CrossRef]

J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).

[CrossRef]
[PubMed]

K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007).

[CrossRef]

A. Dreuw and M. Head-Gordon, “Single-reference ab initio methods for the calculation of excited states of large molecules,” Chem. Rev. 105(11), 4009–4037 (2005).

[CrossRef]
[PubMed]

K. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

C. B. Gorman and S. R. Marder, “An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules,” Proc. Natl. Acad. Sci. U.S.A. 90(23), 11297–11301 (1993).

[CrossRef]
[PubMed]

S. Grimme and M. Parac, “Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems,” ChemPhysChem 4(3), 292–295 (2003).

[CrossRef]
[PubMed]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

A. Dreuw and M. Head-Gordon, “Single-reference ab initio methods for the calculation of excited states of large molecules,” Chem. Rev. 105(11), 4009–4037 (2005).

[CrossRef]
[PubMed]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).

[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).

[CrossRef]
[PubMed]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

C. B. Gorman and S. R. Marder, “An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules,” Proc. Natl. Acad. Sci. U.S.A. 90(23), 11297–11301 (1993).

[CrossRef]
[PubMed]

I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998).

[CrossRef]

I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996).

[CrossRef]

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).

[CrossRef]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

S. Grimme and M. Parac, “Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems,” ChemPhysChem 4(3), 292–295 (2003).

[CrossRef]
[PubMed]

A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007).

[CrossRef]
[PubMed]

J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998).

[CrossRef]

I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996).

[CrossRef]

K. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).

[CrossRef]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).

[CrossRef]
[PubMed]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).

[CrossRef]
[PubMed]

K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007).

[CrossRef]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996).

[CrossRef]

A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007).

[CrossRef]
[PubMed]

A. Ye and J. Autschbach, “Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 125(23), 234101 (2006).

[CrossRef]
[PubMed]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

Ch. Bosshard, “Cascading of second-order nonlinearities in polar materials,” Adv. Mater. 8(5), 385–397 (1996).

[CrossRef]

D. Bryce and J. Autschbach, “Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors. comparison with experiment for diatomic alkali metal halides,” Can. J. Chem. 87(7), 927–941 (2009).

[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel Two-Photon Absorbing Dendritic Structures,” Chem. Mater. 12(10), 2838–2841 (2000).

[CrossRef]

J. Autschbach, “Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions,” Chem. Phys. Chem. 10(11), 1757–1760 (2009).

[CrossRef]
[PubMed]

A. Dreuw and M. Head-Gordon, “Single-reference ab initio methods for the calculation of excited states of large molecules,” Chem. Rev. 105(11), 4009–4037 (2005).

[CrossRef]
[PubMed]

S. Grimme and M. Parac, “Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems,” ChemPhysChem 4(3), 292–295 (2003).

[CrossRef]
[PubMed]

I. D. L. Albert, T. J. Marks, and M. A. Ratner, “Remarkable NLO response and infrared absorption in simple twisted molecular π-chromophores,” J. Am. Chem. Soc. 120, 11174 (1998).

[CrossRef]

B. Jansik, P. Salek, D. Jonsson, O. Vahtras, and H. Ågren, “Cubic response function in time-dependent density functional theory,” J. Chem. Phys. 122(5), 054107 (2005).

[CrossRef]

C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: the PBE0 model,” J. Chem. Phys. 110(13), 6158 (1999).

[CrossRef]

K. V. Mikkelsen, Y. Luo, H. Ågren, and P. Jørgensen, “Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory,” J. Chem. Phys. 100, 8240 (1994).

[CrossRef]

A. Ye, S. Patchkovskii, and J. Autschbach, “Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 127(7), 074104 (2007).

[CrossRef]
[PubMed]

A. Ye and J. Autschbach, “Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis,” J. Chem. Phys. 125(23), 234101 (2006).

[CrossRef]
[PubMed]

I. Albert, T. J. Marks, and M. A. Ratner, “Rational design of molecules with large hyperpolarizabilities. electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties,” J. Phys. Chem. 100(23), 9714–9725 (1996).

[CrossRef]

K. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).

[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).

[CrossRef]
[PubMed]

K. Dolgaleva, R. W. Boyd, and J. E. Sipe, “Cascaded nonlinearity caused by local-field effects in the two-level atom,” Phys. Rev. A 76(6), 063806 (2007).

[CrossRef]

C. Kolleck, “Cascaded second-order contribution to the third-order nonlinear susceptibility,” Phys. Rev. A 69(5), 053812 (2004).

[CrossRef]

J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54(23), 16533–16539 (1996).

[CrossRef]

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).

[CrossRef]

Ch. Bosshard, R. Spreiter, M. Zgonik, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optic effect,” Phys. Rev. Lett. 74(14), 2816–2819 (1995).

[CrossRef]
[PubMed]

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).

[CrossRef]
[PubMed]

B. Bedeaux and N. Bloembergen, “On the relation between microscopic and microscopic nonlinear susceptibilities,” Physica 69(1), 57–66 (1973).

[CrossRef]

C. B. Gorman and S. R. Marder, “An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules,” Proc. Natl. Acad. Sci. U.S.A. 90(23), 11297–11301 (1993).

[CrossRef]
[PubMed]

F. Weinhold, ‘Natural bond orbital methods’. In Encyclopedia of computational chemistry, von Rague Schleyer, P., Ed. John Wiley & Sons: Chichester, 1998; pp 1792–1811.

H. Ågren, J. Autschbach, A. Baev, M. Swihart, and P. N. Prasad, “Rational Design of Organo-Metallic Complexes for Enhanced Third-Order Nonlinearity,”manuscript in preparation.

E. J. Baerends, J. Autschbach, A. Berces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Amsterdam Density Functional, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.