Abstract

This study compares optical switching capabilities of liquid crystal (LC) materials based on different classes of azobenzene dyes. LCs based on molecules containing benzene rings with nearly symmetrical π-π conjugation respond more efficiently to a cw beam than to a nanosecond laser pulse and maintain the changes induced by the beam for tens of hours. Using azo dye molecules containing two benzene rings with push-pull π-π conjugation we demonstrate high photosensitivity to both a cw beam as well as nanosecond laser pulse with only 1 s relaxation of light-induced changes in material properties. Even faster, 1 ms restoration time is obtained for azo dye molecules containing hetaryl (benzothiazole) ring with enhanced push-pull π-π conjugation. These materials respond most efficiently to pulsed excitation while discriminating cw radiation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
    [CrossRef]
  2. S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
    [CrossRef]
  3. J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
    [CrossRef]
  4. C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
    [CrossRef] [PubMed]
  5. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC Press, Boca Raton, 1990), pp. 119–141.
  6. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
    [CrossRef]
  7. A. A. Kovalev, G. L. Nekrasov, Yu. A. Razvin, V. A. Grozhik, and S. V. Serak, “Optical recording of the information in liquid crystals,” in Optical Methods of Information Processing, V. A. Pilipovich, ed. (Nauka i Technika, Minsk, 1978), pp. 21–35 (in Russian).
  8. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  9. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
    [CrossRef]
  10. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).
  11. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
    [CrossRef] [PubMed]
  12. N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).
  13. N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
    [CrossRef]
  14. S. Serak, and N. Tabiryan, “Microwatt Power Optically Controlled Spatial Solitons in Azobenzene Liquid Crystals,” Proc. SPIE 6332, 63320Y1–Y13 (2006).
  15. U. Hrozhyk, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, G. Kedziora, and B. Kimball, “High optical nonlinearity of azobenzene liquid crystals for short laser pulses,” Proc. SPIE 7050, 705007–1-11 (2008).
  16. F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
    [CrossRef] [PubMed]
  17. U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Proc. SPIE, 7414, 74140L–1-15 (2009).
  18. I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
    [CrossRef] [PubMed]
  19. I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
    [CrossRef]
  20. L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
    [CrossRef]
  21. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
    [CrossRef]
  22. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
    [CrossRef]
  23. Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
    [CrossRef]
  24. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
    [CrossRef]
  25. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
    [CrossRef]
  26. L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
    [CrossRef]
  27. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

2010 (2)

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

2008 (2)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

2007 (1)

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
[CrossRef] [PubMed]

2006 (1)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

2004 (2)

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

2003 (2)

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

2002 (2)

F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
[CrossRef] [PubMed]

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

2001 (1)

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
[CrossRef]

1999 (4)

Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

1997 (1)

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

1995 (1)

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

1993 (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

1986 (1)

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
[CrossRef]

1962 (1)

S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
[CrossRef]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Buchwald, S. L.

F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
[CrossRef] [PubMed]

Bunning, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Bunning, T. J.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

Chen, P. H.

De Sio, L.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

Deng, L.

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

Ferjani, S.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

Frontiera, R. R.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
[CrossRef] [PubMed]

Grozhik, V. A.

Hoke, L.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[CrossRef]

Hrozhyk, U.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
[CrossRef] [PubMed]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Ikeda, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Kanazawa, A.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

Kedziora, G.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

Khoo, I. C.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

Kimball, B.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

Kimball, B. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

Klapars, A.

F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
[CrossRef] [PubMed]

Klosterman, J.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Kruger, M.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Kwong, F. Y.

F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
[CrossRef] [PubMed]

Liu, H.-K.

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

Margaryan, H. L.

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Mathies, R. A.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
[CrossRef] [PubMed]

Mora, M. J.

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Moroder, L.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Nagele, T.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Natarajan, L.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Oesterhelt, D.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Ono, H.

S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
[CrossRef]

Park, L.-S.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

Puell, B.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Riggs, J. E.

Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

Rudolph-Bohner, S.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Serak, S.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
[CrossRef] [PubMed]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Shih, M. Y.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
[CrossRef]

I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

Shiono, T.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

Shishido, A.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
[CrossRef]

Steeves, D. M.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

Stuart, C. M.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
[CrossRef] [PubMed]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
[CrossRef]

Sun, Y.-P.

Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

Sutherland, R.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Tabiryan, N.

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
[CrossRef] [PubMed]

Tabiryan, N. V.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” J. Opt. Soc. Am. B 20(3), 538–544 (2003).
[CrossRef]

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
[CrossRef]

Tondiglia, V.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Toyama, O.

S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
[CrossRef]

Tsutsumi, O.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Umeton, C.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

Veltri, A.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

Wachtveitl, J.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Wood, M. V.

Yamashita, S.

S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
[CrossRef]

Zeldovich, B. Ya.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
[CrossRef]

Zinth, W.

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

Adv. Mater. (2)

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically Switchable Bragg Reflectors,” Adv. Mater. 16(16), 1453–1456 (2004).
[CrossRef]

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 1–4 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

S. Yamashita, H. Ono, and O. Toyama, “The cis-trans photoisomerization of azobenzene,” Bull. Chem. Soc. Jpn. 35(11), 1849–1853 (1962).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[CrossRef]

Int. Rev. Phys. Chem. (1)

Y.-P. Sun and J. E. Riggs, “Organic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18(1), 43–90 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Chem. (1)

J. Wachtveitl, T. Nagele, B. Puell, W. Zinth, M. Kruger, S. Rudolph-Bohner, D. Oesterhelt, and L. Moroder, “Ultrafast photoisomerization of azobenzene compounds,” J. Photochem. Photobiol. Chem. 105(2-3), 283–288 (1997).
[CrossRef]

J. Phys. Chem. A (1)

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-Azobenzene from resonance Raman intensity analysis,” J. Phys. Chem. A 111(48), 12072–12080 (2007).
[CrossRef] [PubMed]

Mat. Res. Soc. Symp. Proc. (1)

N. V. Tabiryan, U. A. Hrozhyk, H. L. Margaryan, M. J. Mora, S. R. Nersisyan, and S. V. Serak, “Nonlinear optical absorption and related phenomena in liquid crystals,” Mat. Res. Soc. Symp. Proc. 709, CC4.5.1–11 (2002).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 235–246 (2006), www.beamco.com .
[CrossRef]

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of photosensitive nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 364(1), 141–149 (2001).
[CrossRef]

Mol. Cryst. Liquid Cryst. (Phila. Pa.) (2)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 489, 257–272 (2008).

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zeldovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liquid Cryst. (Phila. Pa.) 136(1), 1–140 (1986).
[CrossRef]

Opt. Eng. (1)

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

Opt. Express (1)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21, 41–45 (2010).

Org. Lett. (1)

F. Y. Kwong, A. Klapars, and S. L. Buchwald, “Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere,” Org. Lett. 4(4), 581–584 (2002).
[CrossRef] [PubMed]

Phys. Chem. (1)

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. 1(18), 4219–4224 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93(11), 113901-1–4 (2004).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Other (5)

A. A. Kovalev, G. L. Nekrasov, Yu. A. Razvin, V. A. Grozhik, and S. V. Serak, “Optical recording of the information in liquid crystals,” in Optical Methods of Information Processing, V. A. Pilipovich, ed. (Nauka i Technika, Minsk, 1978), pp. 21–35 (in Russian).

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC Press, Boca Raton, 1990), pp. 119–141.

S. Serak, and N. Tabiryan, “Microwatt Power Optically Controlled Spatial Solitons in Azobenzene Liquid Crystals,” Proc. SPIE 6332, 63320Y1–Y13 (2006).

U. Hrozhyk, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, G. Kedziora, and B. Kimball, “High optical nonlinearity of azobenzene liquid crystals for short laser pulses,” Proc. SPIE 7050, 705007–1-11 (2008).

U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Proc. SPIE, 7414, 74140L–1-15 (2009).

Supplementary Material (2)

» Media 1: MPG (3398 KB)     
» Media 2: MPG (3482 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a)-(c) Structures of azo dyes of BA, CP and NB series, correspondingly: (a) 4-n-butyl-4’-n-alkoxyazobenzenes; (b) 1-(2-Chloro-4-N-octylpiperazinylphenyl)-2-(4-nitrophenyl)diazene (CPND8); (c) 2-(4-N-hexylpiperazinylphenylazo)-6-nitrobenzothiazole (NB6CBZ). (d) Absorption spectra of 1.6 μm-thick layers of materials used in the tests: 1) BA 1005; 2) CPND8(10%)/5CB; 3) NB6CBZ(5%)/5CB.

Fig. 2
Fig. 2

(a) The experimental setup: PD1 and EM1 - a photodetector and an energy meter for measuring the pump pulse duration and energy at the input of the test LC cell; NDF - a set of neutral density filters for varying the energy reaching the LC cell; L1, L2 - lenses with focal lengths FL1 = 400 mm and FL2 = 80 mm; P - polarizer; A – analyzer. The inset shows the beam profiles obtained as a result of optical switching (Media 1 and Media 2). (b), (c) Normalized transmission of the probe beam as a function of time for 1) BA-1005, 2) CPND8(10%)/5CB, and 3) NB6CBZ(5%)/5CB under pulsed (b) and CW (c) irradiation. (d) Transmission variation of a probe laser beam for: 1) BA-1005; 2) CPND8(10%)/5CB; 3) NB6CBZ(5%)/5CB at 1.6 mJ pulse energy. Shaded area shows the pulse form.

Fig. 3
Fig. 3

The dependence of output pulse energy density (a) and response time (b) on input pulse energy density for 1) BA-1005, 2) CPND8(10%)/5CB, and 3) NB6CBZ(5%)/5CB. The dependence of the output power density (c) and response time (d) on input power density of a CW green laser beam for: 1) BA-1005 and 2) CPND8(10%)/5CB.

Metrics