Abstract

We present difference-frequency stabilization of free-running distributed-feedback (DFB) diode lasers, maintaining a stable phase-lock to a local oscillator (LO) signal. The technique has been applied to coherent hybrid THz imaging which employs a high-power electronic radiation source emitting at 0.62 THz and electro-optic detectors. The THz radiation of the narrow-band emitter is mixed with the difference frequency of the DFB diode laser pair. The resulting intermediate frequency is phase-locked to the LO signal from a radio-frequency generator using a fast laser-current control loop. The stabilization scheme can be adapted readily to a wide range of applications which require stabilized laser beat-notes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340-342 (1989).
    [CrossRef]
  2. L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990).
    [CrossRef]
  3. G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990).
    [CrossRef]
  4. A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
    [CrossRef]
  5. M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
    [CrossRef]
  6. M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003).
    [CrossRef]
  7. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
    [CrossRef]
  8. A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.
  9. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
    [CrossRef]
  10. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17, 328-342 (1999).
    [CrossRef]
  11. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995).
    [CrossRef]
  12. S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
    [CrossRef]
  13. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
    [CrossRef]
  14. J. Hult, I. S. Burns, and C. F. Kaminski, “Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers,” Appl. Opt. 44, 3675-3685 (2005).
    [CrossRef] [PubMed]
  15. X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
    [CrossRef]
  16. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
    [CrossRef]
  17. T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
    [CrossRef]
  18. T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
    [CrossRef]
  19. B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
    [CrossRef] [PubMed]
  20. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
    [CrossRef]
  21. F. Z. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197-5204 (2009).
    [CrossRef] [PubMed]
  22. Radiometer Physics GmbH , http://www.radiometer-physics.de.
  23. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
    [CrossRef]
  24. J.-F. Cliche, B. Shiullue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radio telescope,” IEEE MTT-S Int. Microwave Symposium (2007).

2009 (1)

2008 (2)

B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
[CrossRef] [PubMed]

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

2007 (2)

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

2005 (2)

J. Hult, I. S. Burns, and C. F. Kaminski, “Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers,” Appl. Opt. 44, 3675-3685 (2005).
[CrossRef] [PubMed]

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

2003 (1)

M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003).
[CrossRef]

2002 (1)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

2001 (1)

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

1999 (2)

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17, 328-342 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
[CrossRef]

1998 (1)

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
[CrossRef]

1996 (1)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

1995 (1)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995).
[CrossRef]

1994 (1)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

1990 (3)

L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990).
[CrossRef]

G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990).
[CrossRef]

X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
[CrossRef]

1989 (1)

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340-342 (1989).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Abedin, K. S.

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
[CrossRef]

Alcin, A.

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

am Weg, C.

B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
[CrossRef] [PubMed]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Atlas, D. A.

L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990).
[CrossRef]

Bauer, T.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

Blank, V.

Bordonalli, A. C.

Burns, I. S.

Cámara Mayorga, I.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Clairon, A.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

Compton, R. C.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
[CrossRef]

Davidson, A. C.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
[CrossRef]

de Maagt, P.

Deninger, A.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Deninger, A. J.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Doyle, D.

Ebrahimzadeh, M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

Fortágh, J.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Geckeler, R. D.

Göbel, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Hils, B.

B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
[CrossRef] [PubMed]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Hult, J.

Hyodo, M.

M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
[CrossRef]

Kahn, J. M.

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340-342 (1989).
[CrossRef]

Kaminski, C. F.

Kazovsky, L. G.

L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Kinder, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Köberle, M.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Kolb, J. S.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

Kraft, S.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Lea, S. N.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

Lindsay, I. D.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

Lison, F.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Löffler, T.

F. Z. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197-5204 (2009).
[CrossRef] [PubMed]

B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
[CrossRef] [PubMed]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

May, T.

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Meissner, P.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Meng, F. Z.

Mohler, E.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

Müller-Wirts, T.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Olesen, H.

X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
[CrossRef]

Onodera, N.

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
[CrossRef]

Pan, X.

X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
[CrossRef]

Pernisz, U. C.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

Petridis, C.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

Purchase, K. G.

G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990).
[CrossRef]

Roggenbuck, A.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Roskos, H. G.

F. Z. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197-5204 (2009).
[CrossRef] [PubMed]

B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008).
[CrossRef] [PubMed]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

Santarelli, G.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Schönherr, D.

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

Seeds, A. J.

Simonis, G. J.

G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990).
[CrossRef]

Stothard, D. J. M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

Thomson, M. D.

Tino, G. M.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

Tromborg, B.

X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
[CrossRef]

Trück, C.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

von Spiegel, W.

Walton, C.

Watanabe, M.

M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003).
[CrossRef]

Wise, F. W.

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
[CrossRef]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995).
[CrossRef]

Zhang, X.-C.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995).
[CrossRef]

Zimmermann, C.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995).
[CrossRef]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990).
[CrossRef]

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340-342 (1989).
[CrossRef]

A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998).
[CrossRef]

M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990).
[CrossRef]

J. Appl. Phys. (1)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002).
[CrossRef]

J. Lightwave Technol. (2)

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17, 328-342 (1999).
[CrossRef]

L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990).
[CrossRef]

Laser Phys. Lett. (1)

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005).
[CrossRef]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.

Opt Commun. (1)

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999).
[CrossRef]

Opt. Express (1)

Optics Commun. (1)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994).
[CrossRef]

Rev. Sci. Inst. (2)

A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001).
[CrossRef]

SPIE Proc. (1)

T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007).
[CrossRef]

Other (2)

Radiometer Physics GmbH , http://www.radiometer-physics.de.

J.-F. Cliche, B. Shiullue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radio telescope,” IEEE MTT-S Int. Microwave Symposium (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical phase-locked-loop setup of the fiber-combined DFB diode laser pair.

Fig. 2.
Fig. 2.

Transfer function of the FALC controller for the settings chosen for laser synchronization.

Fig. 3.
Fig. 3.

a) Comparison of the laser beat signal with and without stabilization to a LO frequency of 10 MHz (RBW: 10 kHz, no averaging), Inset: High-resolution measurement in the region 10 MHz ± 0.5 kHz for the locked case (RBW: 10 Hz, no averaging); b) Phase-noise diagram of the phase-locked laser beat signal; The measurements were taken at TOPTICA Photonics AG in Munich.

Fig. 4.
Fig. 4.

Setup of the continuous-wave hybrid THz imaging system. The beat-note of the radiation of the two DFB lasers is phase-locked to the radiation of a 620-GHz emitter.

Fig. 5.
Fig. 5.

a) Frequency spectrum of the phase-locked IF signal (RBW: 9 kHz, limited by the measurement device); b) Oscillogram of the IF signal; The measurements were taken at the University of Frankfurt.

Fig. 6.
Fig. 6.

Measured intensity (b) and phase (c) images of a European 50-cent coin (a), and topographic image (d) numerically derived thereof. Overall measuring time: 15 min.

Metrics