Abstract

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
    [CrossRef]
  2. P. W. Shumate, “Fibre-to-the-Home: 1977-2007,” J. Lightwave Technol. 26(9), 1093–1103 (2008).
    [CrossRef]
  3. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2009), Paper OMV1.
  4. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
    [CrossRef]
  5. M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD Paper Tu.3.E.4.
  6. C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PON with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-16-12296 .
    [CrossRef] [PubMed]
  7. W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  8. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009).
    [CrossRef] [PubMed]
  9. G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
    [CrossRef]
  10. X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
    [CrossRef] [PubMed]
  11. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
    [CrossRef] [PubMed]
  12. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  13. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
    [CrossRef] [PubMed]
  14. J. M. Tang and K. A. Shore, “30Gb/s signal transmission over 40-km directly modulated DFB-based single mode fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  15. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
  16. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Colourless Real-Time Optical OFDM End-to-End Transmission at 7.5Gb/s over 25km SSMF Using 1GHz RSOAs for WDM-PONs,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2010), Paper OMS4.
  17. L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008).
    [CrossRef]
  18. C. Arellano, and J. Prat, “Semiconductor optical amplifiers in access networks,” presented at the International Conference on Transparent Optical Network (ICTON), (Barcelona, Catalonia, Spain, 2005), Paper We.A1.4.
  19. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
    [CrossRef]
  20. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
    [CrossRef] [PubMed]
  21. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
    [CrossRef]
  22. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  23. M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).
  24. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
    [CrossRef]
  25. G. P. Agrawal, Fibre-Optic Communication Systems, (NJ: Wiley, 1997).
  26. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
    [CrossRef]

2009

M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009).
[CrossRef] [PubMed]

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
[CrossRef] [PubMed]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[CrossRef]

2008

L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008).
[CrossRef]

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

P. W. Shumate, “Fibre-to-the-Home: 1977-2007,” J. Lightwave Technol. 26(9), 1093–1103 (2008).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PON with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-16-12296 .
[CrossRef] [PubMed]

2007

2006

2005

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2000

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

1998

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[CrossRef]

1985

M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).

Adams, M. J.

M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).

Birbas, A. N.

Chi, S.

Chien, H. C.

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Cho, S. H.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Chow, C. W.

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Collins, J. V.

M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).

Connelly, M. J.

L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008).
[CrossRef]

Elbers, J.-P.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Giddings, G. P.

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Giddings, R. P.

Grobe, K.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Guekos, G.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Guo, L. Q.

L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008).
[CrossRef]

Gutiérrez-Castrejón, R.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Hamié, A.

Henning, I. D.

M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).

Hugues-Salas, E.

Jeong, G.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Jin, X. Q.

Kee, H. H.

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Kikidis, J.

Kim, B. W.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Klonidis, D.

Lázaro, J. A.

Lee, J.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, W.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Occhi, L.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Omella, M.

Papagiannakis, I.

Park, M. H.

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Prat, J.

Schares, L.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Schrenk, B.

Shih, F. Y.

Shore, K. A.

Shumate, P. W.

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Tang, J. M.

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[CrossRef]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
[CrossRef] [PubMed]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, “30Gb/s signal transmission over 40-km directly modulated DFB-based single mode fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[CrossRef]

Tomkos, I.

Wang, C. H.

Wei, J. L.

Yang, X. L.

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
[CrossRef] [PubMed]

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Yeh, C. H.

Electron. Lett.

G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

IEE Proceedings Pt. J.

M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).

IEEE Commun. Mag.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998).
[CrossRef]

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008).
[CrossRef]

Opt. Express

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
[CrossRef] [PubMed]

M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PON with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-16-12296 .
[CrossRef] [PubMed]

Other

G. P. Agrawal, Fibre-Optic Communication Systems, (NJ: Wiley, 1997).

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2009), Paper OMV1.

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD Paper Tu.3.E.4.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Colourless Real-Time Optical OFDM End-to-End Transmission at 7.5Gb/s over 25km SSMF Using 1GHz RSOAs for WDM-PONs,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2010), Paper OMS4.

C. Arellano, and J. Prat, “Semiconductor optical amplifiers in access networks,” presented at the International Conference on Transparent Optical Network (ICTON), (Barcelona, Catalonia, Spain, 2005), Paper We.A1.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transmission system diagram together with block diagrams of the AMOOFDM transmitter and receiver.

Fig. 2
Fig. 2

Schematic diagram of RSOA intensity modulator.

Fig. 3
Fig. 3

RSOA/SOA optical gain characteristics under different operating conditions. (a) Optical gain versus optical input power with the bias current being fixed at 100mA. (b)-(d) Optical gain versus bias current for different optical input powers: −10dBm for (b); 10dBm for (c) and 22.5dBm for (d).

Fig. 4
Fig. 4

Contour plots of signal line rate as a function of CW optical input power and bias current for RSOAs with different rear-facet reflectivity values of 0.3 in (a), 0.6 in (b) and 0.9 in (c) and SOAs in (d). An IMDD 60km SMF transmission system is considered.

Fig. 5
Fig. 5

Signal line rate versus PTP value of driving current for different RSOA rear-facet reflectivity and optical input powers.

Fig. 6
Fig. 6

Signal line rate versus transmission distance for RSOA and SOA intensity modulators operating under identified optimum conditions.

Fig. 9
Fig. 9

Effective carrier lifetime (a) and signal extinction ratio (b) versus RSOA rear-facet reflectivity for different optical powers.

Fig. 7
Fig. 7

Comparisons between simulations and real-time experimental measurements. (a) RSOA intensity modulator frequency response, and (b)-(g) constellations of representative subcarriers. (b)-(d) are simulated results and (e)-(g) are experimental results.

Fig. 8
Fig. 8

Signal line rate versus rear-facet reflectivity value of RSOA subject to different optical input powers.

Fig. 10
Fig. 10

Signal line rate versus reach performance for different optical input powers and rear-facet reflectivity values.

Fig. 11
Fig. 11

Signal line rate versus reach performance for the cases of including and excluding chromatic dispersion. Optical input power is fixed at −10dBm.

Tables (1)

Tables Icon

Table 1 RSOA, SOA, SMF and PIN Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G R S O A ( T ) = P o u t ( T ) / P i n ( T ) = r exp [ 2 h ( T ) ]
G S O A ( T ) = P z = L + ( T ) / P i n ( T ) = exp [ h ( T ) ]
R s i g n a l = k = 2 M s s k = k = 2 M s n k T b = f s k = 2 M s n k 2 M s ( 1 + η )
B E R T = k = 2 M s E n k k = 2 M s B i t k

Metrics