Abstract

We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P1178 > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P589 > 50W with peak conversion efficiency η589 ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D2a-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. www.eso.org/sci/facilities/develop/ao/images/AOF_Booklet.pdf
  2. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).
  3. J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
    [CrossRef]
  4. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  5. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006).
    [CrossRef] [PubMed]
  6. A. Shirakawa, H. Murayama, K.-I. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” presented at Photonics West, SPIE, Fibre Lasers VI: Technology, Systems, and Applications (2009).
  7. L. B. Sharma, “1.52W Frequency doubled fibre-based continuous wave orange laser radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131 (2005).
  8. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [CrossRef] [PubMed]
  9. L. R. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
    [CrossRef] [PubMed]
  10. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “25W Raman-fibre-amplifier-based 589nm laser for laser guide star,” Opt. Express 17(21), 19021–19026 (2009).
    [CrossRef]
  11. www.ipgphotonics.com/Collateral/Documents/English-US/Summer_Newsletter_IPG_2009.pdf
  12. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
    [CrossRef]
  13. T. Y. Fan, “Laser beam combining for high power high radiance sources,” IEEE J. Sel. Top.QE 11(3), 567–577 (2005).
    [CrossRef]
  14. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, “Wavelength beam combining of ytterbium fiber lasers,” Opt. Lett. 28(5), 331–333 (2003).
    [CrossRef] [PubMed]
  15. P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).
  16. J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
    [CrossRef]
  17. B. Lei and Y. Feng, “Coherent combining of two fibre lasers in a Michelson-type coupled cavity,” Opt. Commun. 281(4), 739–743 (2008).
    [CrossRef]
  18. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33(4), 354–356 (2008).
    [CrossRef] [PubMed]
  19. G. T. Moore, “Binary coherent beam combination with mirror pairs,” Appl. Opt. 41(30), 6399–6409 (2002).
    [CrossRef] [PubMed]
  20. V. A. Kozlov, J. Hernández-Cordero, and T. F. Morse, “All-fiber coherent beam combining of fiber lasers,” Opt. Lett. 24(24), 1814–1816 (1999).
    [CrossRef]
  21. A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10(21), 1167–1172 (2002).
    [PubMed]
  22. A. Shirakawa, K. Matsuo, and K.-I. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and beam direction control,” in Advanced Solid State Photonics, Technical Digest (Optical Society of America) paper MC3 (2005).
  23. L. R. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. Bonaccini Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20W at 589nm via frequency doubling of coherently combined 2-MHz 1178nm CW signals amplified in Raman PM fiber amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.
  24. www.toptica.com
  25. www.linos.com
  26. Y. Feng, L. R. Taylor, D. Bonaccini Calia, R. Holzlöhner, and W. Hackenberg, “39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm,” presented at Frontiers in Optics, San Diego, post-deadline paper PDPA4 (2009).
  27. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [CrossRef]
  28. www.optiphase.com
  29. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  30. R. Xiao, J. Hou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16(3), 2015–2022 (2008).
    [CrossRef] [PubMed]
  31. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29(5), 474–476 (2004).
    [CrossRef] [PubMed]
  32. M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).
  33. www.phasicscorp.com
  34. K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
    [CrossRef] [PubMed]
  35. E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. K. Campbell, D. E. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensate machines,” Rev. Sci. Instr., 77, 2, 023106–01–023106–13 (2006).
  36. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [CrossRef] [PubMed]

2009

2008

2007

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
[CrossRef] [PubMed]

2006

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[CrossRef] [PubMed]

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

2005

L. B. Sharma, “1.52W Frequency doubled fibre-based continuous wave orange laser radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131 (2005).

T. Y. Fan, “Laser beam combining for high power high radiance sources,” IEEE J. Sel. Top.QE 11(3), 567–577 (2005).
[CrossRef]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2001

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

1999

1995

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

1983

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Aggarwal, R. L.

Andrews, M.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Asobe, M.

Augst, S. J.

Bamford, D.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Beach, R.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Bigot, L.

Bonaccini Calia, D.

Bouwmans, G.

Brown, A.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Byer, R. L.

Calia, D. B.

Chen, Z.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Cheung, E. C.

Cook, D.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dai, Z.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

Davis, K.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Dawson, J. W.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Digonnet, M. J. F.

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Drobshoff, A.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dronov, A. G.

Duan, K.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

Durfee, D.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Fan, T. Y.

Fejer, M. M.

Feng, Y.

Ferin, A. A.

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Goodno, G. D.

Goyal, A. K.

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hänsch, T. W.

Hernández-Cordero, J.

Ho, J. G.

Hong, F. L.

Hou, J.

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Jiang, Z. F.

Kanaya, T.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

Ketterle, W.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Kozlov, V. A.

Kurn, D.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Langrock, C.

Lei, B.

B. Lei and Y. Feng, “Coherent combining of two fibre lasers in a Michelson-type coupled cavity,” Opt. Commun. 281(4), 739–743 (2008).
[CrossRef]

Li, J.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

Limpert, J.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Liu, M.

Liu, Y.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

Liu, Z.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Messerly, M.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Mewes, M.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Moore, G. T.

Morse, T. F.

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Musha, M.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

Nakagawa, K.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

Nishida, Y.

Nishikawa, T.

Ou, Z.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

Ozawa, A.

Payne, S.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Pennington, D. M.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Popov, S. V.

Razdobreev, I.

Rice, R. R.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Rothenberg, J.

Rulkov, A. B.

Saitou, T.

Sanchez, A.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Sekiguchi, T.

Sharma, L. B.

L. B. Sharma, “1.52W Frequency doubled fibre-based continuous wave orange laser radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131 (2005).

Sharpe, S.

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Shirakawa, A.

Sinha, S.

Taylor, J. R.

Taylor, L. R.

Thielen, P.

Tünnermann, A.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Ueda, K.-I.

A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10(21), 1167–1172 (2002).
[PubMed]

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

van Druten, N.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Vyatkin, M. Y.

Wang, X.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Weber, M.

Wickham, M.

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

Xiao, R.

Xu, X.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Zhou, P.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Appl. Opt.

Appl. Phys. B

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).

IEEE J. Sel. Top. Quantum Electron

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007).
[CrossRef]

IEEE J. Sel. Top.Quantum Electron

T. Y. Fan, “Laser beam combining for high power high radiance sources,” IEEE J. Sel. Top.QE 11(3), 567–577 (2005).
[CrossRef]

Opt. Commun.

J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009).
[CrossRef]

B. Lei and Y. Feng, “Coherent combining of two fibre lasers in a Michelson-type coupled cavity,” Opt. Commun. 281(4), 739–743 (2008).
[CrossRef]

Opt. Express

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[CrossRef] [PubMed]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10(21), 1167–1172 (2002).
[PubMed]

L. R. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
[CrossRef] [PubMed]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[CrossRef] [PubMed]

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “25W Raman-fibre-amplifier-based 589nm laser for laser guide star,” Opt. Express 17(21), 19021–19026 (2009).
[CrossRef]

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
[CrossRef] [PubMed]

R. Xiao, J. Hou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16(3), 2015–2022 (2008).
[CrossRef] [PubMed]

Opt. Laser Technol.

P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).

Opt. Lett.

Phys. Rev. Lett.

K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[CrossRef] [PubMed]

Proc. SPIE

J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Rev. Laser Eng.

L. B. Sharma, “1.52W Frequency doubled fibre-based continuous wave orange laser radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131 (2005).

Other

www.ipgphotonics.com/Collateral/Documents/English-US/Summer_Newsletter_IPG_2009.pdf

A. Shirakawa, H. Murayama, K.-I. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” presented at Photonics West, SPIE, Fibre Lasers VI: Technology, Systems, and Applications (2009).

www.eso.org/sci/facilities/develop/ao/images/AOF_Booklet.pdf

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. K. Campbell, D. E. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensate machines,” Rev. Sci. Instr., 77, 2, 023106–01–023106–13 (2006).

www.optiphase.com

www.phasicscorp.com

A. Shirakawa, K. Matsuo, and K.-I. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and beam direction control,” in Advanced Solid State Photonics, Technical Digest (Optical Society of America) paper MC3 (2005).

L. R. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. Bonaccini Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20W at 589nm via frequency doubling of coherently combined 2-MHz 1178nm CW signals amplified in Raman PM fiber amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.

www.toptica.com

www.linos.com

Y. Feng, L. R. Taylor, D. Bonaccini Calia, R. Holzlöhner, and W. Hackenberg, “39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm,” presented at Frontiers in Optics, San Diego, post-deadline paper PDPA4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the overall experimental configuration.

Fig. 2
Fig. 2

Schematic of the free-space cascaded CBC layout and subsequent SHG. The complete set-up is built on a 50x65cm breadboard (the SHG cavity covers approximately 15x20cm).

Fig. 3
Fig. 3

Power spectrum of the output intensity noise of RFA20 at P1178 = 17W over the range [DC; 2.5kHz]. The spectral noise remains white and featureless towards higher frequencies, measured up to 2.25MHz (limited by the detector response time).

Fig. 4
Fig. 4

(a-d). Intensity noise power spectra of the unlocked (red), and coherently locked (blue), combined ‘bright’ 1178nm signal indicating low- and high-frequency noise properties.

Fig. 5
Fig. 5

(a-d). Power spectra of the voltage signals to the slow (woofer, PZ1) and fast (tweeter, PZ2) all-in-fiber piezo-stretcher phase control units (under CBC1, of a pair of RFA).

Fig. 6
Fig. 6

Efficiencies of the collinear coherent primary- and cascaded-combinations (red circles and blue triangles respectively), including the overall combination efficiency (pink squares). All values are plotted against total cascaded-combined (useful, polarised, isolated) 1178nm power.

Fig. 7
Fig. 7

SHG to 589nm of a 2-RFA CBC pair, and of a cascaded-combined 3-RFA triplet (indicating both indistinguishable powers and efficiencies, respectively).

Fig. 8
Fig. 8

(a-b). Power spectra of the 589nm intensity noise (slow and fast timescales).

Fig. 9
Fig. 9

589nm powers and efficiencies under SHG of a cascaded-CBC RFA triplet, generating P589 > 50W CW and demonstrating peak conversion efficiencies η589 ~85%.

Fig. 10
Fig. 10

Time-trace of the visible power generated under SHG of a CBC RFA triplet, demonstrating 41.45W mean power over 500s, with 0.66W rms intensity noise.

Metrics