Abstract

Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional high-isotropic-resolution retinal images in vivo. We developed AO-OCT with a 1.03-μm probing beam and demonstrated high-penetration, high-resolution retinal imaging. Axial scans are acquired with a speed of 47,000 lines/s. AO closed loop is configured with a single deformable mirror. Seven eyes of 7 normal subjects were examined. Signal enhancement was found for all subjects. A rippled interface between nerve fiber layer and ganglion cell layer, boundary between ganglion cell layer and inner plexiform layer, and chorioscleral interface were identified. Simultaneous high-resolution and high-penetration choroidal imaging may be useful for microstructural investigation of photoreceptors and glaucomatous nerve-fiber abnormalities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
    [CrossRef]
  2. G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.
  3. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999), http://jjap.ipap.jp/link?JJAP/38/6133/.
    [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
    [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
    [CrossRef] [PubMed]
  7. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-19-1745.
    [CrossRef] [PubMed]
  8. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480.
    [CrossRef] [PubMed]
  9. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).
  10. T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, "Spectral domain optical coherence tomography and glaucoma," Int. Ophthalmol. Clin. 48, 29-45 (2008), http://dx.doi.org/10.1097/IIO.0b013e318187e801.
    [CrossRef] [PubMed]
  11. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," Appl. Opt. 12, 555-563 (1973), http://ao.osa.org/abstract.cfm?URI=ao-12-3-555.
    [CrossRef] [PubMed]
  12. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
    [CrossRef]
  13. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411.
    [CrossRef] [PubMed]
  14. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
    [CrossRef] [PubMed]
  15. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
    [CrossRef] [PubMed]
  16. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
    [CrossRef] [PubMed]
  17. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
    [CrossRef] [PubMed]
  18. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
    [CrossRef] [PubMed]
  19. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).
  20. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
    [CrossRef]
  21. B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
    [CrossRef]
  22. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
    [CrossRef] [PubMed]
  23. E. J. Fernández and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-21199.
    [CrossRef] [PubMed]
  24. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997), http://josaa.osa.org/abstract.cfm?URI=josaa-14-11-2884.
    [CrossRef]
  25. A. Roorda, F. Romero-Borja, W. J. D. III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405.
    [PubMed]
  26. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006), http: //www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3354.
    [CrossRef] [PubMed]
  27. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313.
    [CrossRef]
  28. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors," J. Opt. Soc. Am. A 24, 1305-1312 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1305.
    [CrossRef]
  29. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, "Compact adaptive optics line scanning ophthalmoscope," Opt. Express 17, 10242-10258 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-12-10242.
    [CrossRef] [PubMed]
  30. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
    [CrossRef] [PubMed]
  31. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4792.
    [CrossRef] [PubMed]
  32. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8532.
    [CrossRef] [PubMed]
  33. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
    [CrossRef] [PubMed]
  34. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3345.
    [CrossRef] [PubMed]
  35. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
    [CrossRef] [PubMed]
  36. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373.
    [CrossRef]
  37. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126.
    [CrossRef] [PubMed]
  38. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-1-22.
    [CrossRef]
  39. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-15-11083.
    [CrossRef] [PubMed]
  40. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J.W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17, 4084-4094 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4084.
    [CrossRef] [PubMed]
  41. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, "Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina," Opt. Express 17, 19382-19400 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19382.
    [CrossRef] [PubMed]
  42. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, "Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics," Opt. Express 17, 21634-21651 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-24-21634.
    [CrossRef] [PubMed]
  43. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, "Adaptive optics retinal scanner for one-micrometer light source," Opt. Express 18, 1406-1418 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1406.
    [CrossRef] [PubMed]
  44. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406.
    [CrossRef] [PubMed]
  45. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, "Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography," Opt. Express 18, 1358-1372 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1358.
    [CrossRef] [PubMed]
  46. Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).
  47. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1250.
    [CrossRef]
  48. H. Hofer, P. Artal, B. Singer, J. L. Aragón and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001), http://josaa.osa.org/abstract.cfm?URI=josaa-18-3-497.
    [CrossRef]
  49. T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227-229 (1987), http://ol.osa.org/abstract.cfm?URI=ol-12-4-227.
    [CrossRef] [PubMed]
  50. E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http:// www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8184.
    [CrossRef] [PubMed]
  51. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
    [CrossRef] [PubMed]
  52. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995), http://josaa.osa.org/abstract.cfm?URI=josaa-12-2-195.
    [CrossRef]
  53. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
    [CrossRef] [PubMed]
  54. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002), http://journalofvision.org/2/5/4/.
    [CrossRef]
  55. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003), http://www.iovs.org/cgi/content/abstract/44/ 10/4580.
    [CrossRef] [PubMed]
  56. B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-11-2318.
    [CrossRef]
  57. S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-12-2598.
    [CrossRef]
  58. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16141.
    [CrossRef] [PubMed]
  59. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical stiles-crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6486.
    [CrossRef] [PubMed]

2010

2009

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J.W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17, 4084-4094 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4084.
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

2008

2007

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16141.
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313.
[CrossRef]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors," J. Opt. Soc. Am. A 24, 1305-1312 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1305.
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373.
[CrossRef]

F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1250.
[CrossRef]

2006

2005

E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http:// www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-12-2598.
[CrossRef]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

2004

2003

2002

2001

1999

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999), http://jjap.ipap.jp/link?JJAP/38/6133/.
[CrossRef]

1998

G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
[CrossRef]

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

1990

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

1987

1973

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

Aragón, J. L.

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

Bajraszewski, T.

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

Bigelow, C. E.

Blinder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Bouma, B. E.

Bower, B.

Bradu, A.

Bridgford, T.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

Burnes, D.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Burnes, D. L.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

Burns, S. A.

Carlini, A. R.

Cense, B.

Chang, S.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Chavez-Pirson, A.

Chen, D. C.

Chen, T.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Chen, T. C.

Chen, Y.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Chen, Z.

Choi, S.

Choi, S. S.

Choma, M.

Christou, J.

Chuck, R.

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

Dainty, C.

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

de Bruin, M.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

Delori, F. C.

Doble, N.

Drexler, W.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http:// www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
[CrossRef] [PubMed]

Elsner, A. E.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
[CrossRef]

Esmaili, D.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Evans, J.W.

Fabritius, T.

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E.

Fernández, E. J.

Fuller, A. R.

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

Gao, W.

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Hale, G. M.

Hamann, B.

Hammer, D. X.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

Hausler, G.

G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.

Hermann, B.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
[CrossRef]

Hofer, B.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Hofer, H.

Iftimia, N. V.

Iwasaki, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Izatt, J.

Jaillon, F.

Jones, S.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kajc, V.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
[CrossRef]

Kawana, K.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Kowalczyk, A.

Kurokawa, K.

Laut, S.

Lee, E. C.

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

Lim, H.

Lin, J.

Lindner, M. W.

G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.

Loewenstein, J.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Makita, S.

Merino, D.

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

Miller, D.

Miller, D. T.

Mitsui, T.

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999), http://jjap.ipap.jp/link?JJAP/38/6133/.
[CrossRef]

Miura, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Mujat, M.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
[CrossRef] [PubMed]

Muller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

Nassif, N.

Nelson, J.

Okamoto, F.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Oliver, S. S.

Olivier, S.

Olivier, S. S.

Oshika, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003), http://www.iovs.org/cgi/content/abstract/44/ 10/4580.
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Podoleanu, A. G.

Považay, B.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
[CrossRef] [PubMed]

Querry, M. R.

Reiser, B.

Rha, J.

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

Romero-Borja, F.

Roorda, A.

Sarunic, M.

Sato, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Sattmann, H.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
[CrossRef] [PubMed]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

Sengers, J. M. H. L.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

Silva, D. A.

Simpson, E.

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

Singer, B.

Sliney, D. H.

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

Straub, J.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

Tamada, D.

Targowski, P.

Tearney, G. J.

Tumbar, R.

Unterhuber, A.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142.
[CrossRef] [PubMed]

Ustun, T. E.

Vabre, L.

Wang, Y.

Webb, R. H.

Werner, J.

Werner, J. S.

Williams, D. R.

Wilson, T.

Windeler, R.

Wojtkowski, M.

Yabusaki, M.

Yamanari, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Yang, C.

Yasuno, Y.

Yatagai, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

Yun, S. H.

Zawadzki, R.

Zawadzki, R. J.

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

Zhang, Y.

Zhao, M.

Appl. Opt.

Invest. Ophthalmol. Vis. Sci.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high penetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009), http://dx. doi.org/10.1167/iovs.08-2272.
[CrossRef]

B. Považay, B. Hermann, B. Hofer, V. Kajć, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009), http: //dx.doi.org/10.1167/iovs.08-2869.
[CrossRef]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003), http://www.iovs.org/cgi/content/abstract/44/ 10/4580.
[CrossRef] [PubMed]

J. Biomed Opt.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed Opt. 12, 041211 (2007), http://link.aip.org/link/?JBO/12/041211/1.
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14, 024016 (2009), http://link.aip.org/link/?JBO/14/024016/1.
[CrossRef] [PubMed]

G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) http://link.aip.org/link/?JBO/3/21/1.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008), http://link. aip.org/link/?JBO/13/024008/1.
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-12-2598.
[CrossRef]

F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1250.
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001), http://josaa.osa.org/abstract.cfm?URI=josaa-18-3-497.
[CrossRef]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313.
[CrossRef]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors," J. Opt. Soc. Am. A 24, 1305-1312 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1305.
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373.
[CrossRef]

J. Phys. Chem. Ref. Data

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990), http://link.aip. org/link/?JPR/19/677/1.
[CrossRef]

J. Vis.

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002), http://journalofvision.org/2/5/4/.
[CrossRef]

Jpn. J. Appl. Phys.

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999), http://jjap.ipap.jp/link?JJAP/38/6133/.
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995), http://www.sciencedirect. com/science/article/B6TVF-3XWS0W5-99/2/afffaeda4bf990ec4e44577847b7d2e8.
[CrossRef]

Opt. Express

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
[CrossRef] [PubMed]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411.
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http:// www.opticsexpress.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J.W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17, 4084-4094 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4084.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. D. III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405.
[PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006), http: //www.opticsexpress.org/abstract.cfm?URI=oe-14-8-3354.
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16141.
[CrossRef] [PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical stiles-crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http:// www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, "Adaptive optics retinal scanner for one-micrometer light source," Opt. Express 18, 1406-1418 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1406.
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406.
[CrossRef] [PubMed]

F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, "Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography," Opt. Express 18, 1358-1372 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-1358.
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995), http://stacks.iop.org/0031-9155/40/963.
[CrossRef] [PubMed]

Vision Res.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator." Vision Res. 45, 3432-3444 (2005), http://dx.doi.org/ 10.1016/j.visres.2005.08.028.
[CrossRef] [PubMed]

Other

M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, "Compact adaptive optics line scanning ophthalmoscope," Opt. Express 17, 10242-10258 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-12-10242.
[CrossRef] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, "Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina," Opt. Express 17, 19382-19400 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19382.
[CrossRef] [PubMed]

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, "Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics," Opt. Express 17, 21634-21651 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-24-21634.
[CrossRef] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-1-22.
[CrossRef]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-15-11083.
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-21199.
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997), http://josaa.osa.org/abstract.cfm?URI=josaa-14-11-2884.
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).

T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, "Spectral domain optical coherence tomography and glaucoma," Int. Ophthalmol. Clin. 48, 29-45 (2008), http://dx.doi.org/10.1097/IIO.0b013e318187e801.
[CrossRef] [PubMed]

B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005), http://josaa.osa.org/abstract.cfm?URI=josaa-22-11-2318.
[CrossRef]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995), http://josaa.osa.org/abstract.cfm?URI=josaa-12-2-195.
[CrossRef]

Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the AO-OCT. WDM: Wavelength division multiplexing coupler, C: Circulator, PC: Polarization controller, FC: Fiber coupler. (a) The side and top views of the optical setup of the AO retinal scanner. L#: Lenses, LP#: Linear polarizers, BS: Beam splitter, Hs: Harmonic separator, ST: Stop, SM#: Spherical mirrors, FM#: Flat mirrors, WS: Wavefront sensor, DM: Deformable mirror, VS: Vertical galvanometric scanner, HS: Horizontal resonant scanner mounted galvanometric scanner, APD: Avalanche photodiode. (b) Reference arm. ND: ND filter. (c) Spectrometer.

Fig. 2.
Fig. 2.

(a) Color fundus photographs with the field of view of 20 degree × 20 degree. White arrow indicates the measured location of the retina. Single B-scan images (b) without AO correction and (c) with AO correction. Black bar indicates 100 μm on the retina.

Fig. 3.
Fig. 3.

Averaged B-scan image. (b) shows the region enclosed by the orange box in (a). Black bar indicates 100 μm on the retina. Red arrows indicate the chorioscleral interface. NFL: nerve fiber layer, GCL: ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, PRL: photoreceptor layer, RPE: retinal pigment epithelium, CC: choriocapillaris, ELM: external limiting membrane, IS/OS: inner/outer segment junction.

Fig. 4.
Fig. 4.

Averaged B-scan images. The left part of the image was taken without AO and the right part of the image was taken with AO. (a)–(g) are corresponding with the subject ID of A–G.

Fig. 5.
Fig. 5.

(a)Lateral resolution. (b) residual aberration coefficients and (c) residual RMS wave-front error, which are measured using the HASO32. The error bars (green and red dashed lines) indicate the standard deviation of the residual aberration coefficients of AO-off and AO-on.

Tables (4)

Tables Icon

Table 1. Subject’s characteristics. Sph and Cyl: spherical and cylindrical powers in diopter, respectively, of the eye.

Tables Icon

Table 2. Signal gain [dB]. NFL-IPL includes the regions from the NFL to the IPL, INL-ONL includes the regions from the INL to the ONL, PRL-Choroid includes the regions from the PRL to the Choroid.

Tables Icon

Table 3. Sensitivity of several features. The targeted features are a rippled interface between the NFL and the GCL (NFL/GCL), an interface between the GCL and the IPL (GCL/IPL), and a chorioscleral interface (CSI). A.S.: Average Sensitivity.

Tables Icon

Table 4. System characteristics of non-AO SD-OCT, AO-OCT, and AO-SLO.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PSF = PSF ill × ( PSF obs * D )

Metrics