Abstract

A surface plasmon polariton detector is demonstrated at infra-red wavelengths. The device consists of a metal stripe on silicon forming a Schottky contact thereon and supporting surface a plasmon polariton mode that is strongly confined and localised to the metal–semiconductor interface. Detection of optical radiation below the bandgap of silicon (at infrared wavelengths) occurs through internal photoemission. Responsivities of 0.38 and 1.04 mA/W were measured via end-fire coupling to a tapered optical fibre, at room temperature and at a wavelength of 1280 nm, for gold and aluminium stripes on n-type silicon, respectively. The device can be integrated with other structures used in nano-plasmonics, nano-photonics or silicon-based photonics, and it holds promise for short-reach optical interconnects and power monitoring applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
    [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [CrossRef]
  6. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
    [CrossRef]
  7. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
    [CrossRef]
  8. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
    [CrossRef]
  9. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
    [CrossRef]
  10. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
    [CrossRef] [PubMed]
  11. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [CrossRef]
  12. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
    [CrossRef]
  13. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
    [CrossRef] [PubMed]
  14. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [CrossRef]
  15. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
    [CrossRef]
  16. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [CrossRef]
  17. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, USA, 2006).
  18. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
    [CrossRef]
  19. H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).
  20. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
    [CrossRef]
  21. K. M. Torosian, A. S. Karakashian, and Y. Y. Teng, “Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes,” Appl. Opt. 26(13), 2650–2652 (1987).
    [CrossRef] [PubMed]
  22. C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
    [CrossRef]
  23. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
    [CrossRef]
  24. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
    [CrossRef] [PubMed]
  25. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009).
    [CrossRef]
  26. Oz Optics, Tapered PM Optical Fiber (TPMJ-X-1550–8/125–0.4–10–2.5–14–1) ( www.ozoptics.com )
  27. A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, New York, USA, 1992).
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, USA, 1985).
  29. P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
    [CrossRef]
  30. P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
    [CrossRef]
  31. V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994).
    [CrossRef]
  32. C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
    [CrossRef]
  33. J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
    [CrossRef]
  34. J. M. Mooney, “The dependence of the Schottky emission coefficient on reverse bias,” J. Appl. Phys. 65(7), 2869–2871 (1989).
    [CrossRef]

2010

2009

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[CrossRef]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009).
[CrossRef]

2008

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

2007

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

2006

2005

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

2001

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

2000

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
[CrossRef]

1994

V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994).
[CrossRef]

1991

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

1989

J. M. Mooney, “The dependence of the Schottky emission coefficient on reverse bias,” J. Appl. Phys. 65(7), 2869–2871 (1989).
[CrossRef]

1988

J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[CrossRef]

1987

1985

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

1984

C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
[CrossRef]

1982

H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).

1972

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[CrossRef]

Akbari, A.

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009).
[CrossRef]

Apsley, N.

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Aubry, V.

V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Baird, M. J.

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[CrossRef]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009).
[CrossRef]

P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Breukelaar, I.

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Casalino, M.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

Charbonneau, R.

P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[CrossRef]

Chen, Z.

Coppola, G.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

Daboo, C.

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Dereux, A.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Diadiuk, V.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elabd, H.

H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).

Emeny, M. T.

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Fafard, S.

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Gioffrè, M.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

Goudonnet, J. P.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

Holmgaard, T.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
[CrossRef]

Hughes, H. P.

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Jones, T.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Karakashian, A. S.

Kosonocky, W. F.

H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).

Kramer, P.

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[CrossRef]

Krasavin, A. V.

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Kuipers, L. K.

Kwong, D. L.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

Lacroute, Y.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Lahoud, N.

P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Lenth, W.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Lien, C.-D.

C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
[CrossRef]

Lo, G. Q.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

Markey, L.

Mattiussi, G.

Meyer, F.

V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994).
[CrossRef]

Mooney, J. M.

J. M. Mooney, “The dependence of the Schottky emission coefficient on reverse bias,” J. Appl. Phys. 65(7), 2869–2871 (1989).
[CrossRef]

Moretti, L.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

Nicolet, M.-A.

C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Polman, A.

Rendina, I.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Scales, C.

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Sirleto, L.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

So, F. C. T.

C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
[CrossRef]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

Teng, Y. Y.

Torosian, K. M.

van Ruyven, L. J.

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[CrossRef]

Verhagen, E.

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Werner, J. H.

J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
[CrossRef]

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

Zayats, A. V.

Zhu, S.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Adv. Opt. Photonics

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008).
[CrossRef]

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[CrossRef]

IEEE Trans. Electron. Dev.

C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984).
[CrossRef]

J. Appl. Phys.

V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994).
[CrossRef]

J. M. Mooney, “The dependence of the Schottky emission coefficient on reverse bias,” J. Appl. Phys. 65(7), 2869–2871 (1989).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. A

P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008).
[CrossRef]

N. J. Phys.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[CrossRef]

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

RCA Review

H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).

Sens. Actuactor. B

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999).
[CrossRef]

Thin Solid Films

C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).

S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, USA, 2006).

Oz Optics, Tapered PM Optical Fiber (TPMJ-X-1550–8/125–0.4–10–2.5–14–1) ( www.ozoptics.com )

A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, New York, USA, 1992).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, USA, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketches of the SPP photodetector. (a) Three dimensional view of the device and experimental setup used to optically and electrically test the device. (b) Close-up view of the alignment of the tapered optical fiber with the SPP waveguide.

Fig. 2
Fig. 2

Theoretical modelling of the SPP waveguide. (a) Re{Ey} distribution of the asb0 mode for Au and Al metal stripes of w = 2.5 µm and t = 135 nm, at several free-space optical wavelengths. In each case the field is normalised such that |Re{Ey(w/2,0)}| = 1. (b) Theoretical coupling efficiencies γc of the tapered PM optical fibre to the asb0 mode for Au and Al stripes on n-Si over the wavelength range of interest.

Fig. 3
Fig. 3

High resolution microscopy images of the fabricated SPP photodetector. (a) SEM image of the Al on n-Si waveguide showing the Al stripe and a high-quality cleaved end facet. (b) AFM scan of the Al stripe revealing its thickness and width, as well as its high uniformity.

Fig. 4
Fig. 4

Measured diode current (I) versus applied voltage (V) of the Al and Au on n-Si SPP detectors. Inset shows a close-up view of the reverse bias region.

Fig. 5
Fig. 5

Measured diode current (-I) of SPP detectors as a function of incident optical power (Pinc) at several λ0’s at a bias of V = −100 mV; (a, b) Au on n-Si, (c, d) Al on n-Si.

Fig. 6
Fig. 6

(a) Measured photocurrent (Iph) of a Au on n-Si SPP detector as a function of λ0 for Pinc = 2 mW and a bias of V = −100 mV; (c) corresponding measurement for the Al on n-Si detector. (b, d) Corresponding Fowler plots.

Tables (1)

Tables Icon

Table 1 Experimental and theoretical responsivities in mA/W of Au on n-Si and Al on n-Si SPP detectors at a bias voltage of V = −100 mV.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ c = | E y 1 E y 2 * d A E y 1 E y 1 * d A E y 2 E y 2 * d A | 2
R = ( 1 e α l ) γ c η i h ν
η i = 1 2 ( 1 Φ B h ν ) 2
R = γ c ( 1 e α l ) 8 Φ B ( h ν Φ B ) 2 ( h ν ) 2
R h v = γ c ( 1 e α l ) 8 Φ B ( h ν Φ B )
I d a r k = C a r e a A * * T 2 e q Φ B / ( k T )

Metrics