Abstract

We demonstrate simultaneous strain and temperature sensing based on hybrid Raman and Brillouin scattering with enhanced performance thanks to the combined use of standard Fabry–Perot lasers in conjunction with optical pulse coding techniques. The combination of both techniques allows for an improvement of ~8.7 dB in temperature resolution and ~3 dB in strain resolution, with respect to standard distributed feedback lasers, as confirmed by experiments, resulting in a final temperature / strain resolution of ~0.27K / ~30με over 25-km sensing fiber range, avoiding the use of optical amplification and wavelength averaging techniques.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Great potential,” Nat. Photonics 2(3), 143–158 (2008).
  2. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
    [CrossRef]
  3. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
    [CrossRef]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [CrossRef] [PubMed]
  5. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26(13), 1854–1861 (2008).
    [CrossRef]
  6. G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
    [CrossRef]
  7. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [CrossRef]
  8. K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
    [CrossRef]
  9. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16(23), 19097–19111 (2008).
    [CrossRef]

2009 (1)

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[CrossRef]

2008 (3)

2007 (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

2006 (1)

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[CrossRef]

2005 (1)

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
[CrossRef]

1997 (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

Alahbabi, M. N.

Bolognini, G.

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[CrossRef]

Bolognini, G.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Bolognini, G.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
[CrossRef]

Cho, Y. T.

De Souza, K.

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[CrossRef]

Di Pasquale, F.

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[CrossRef]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16(23), 19097–19111 (2008).
[CrossRef]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

He, Z.

Hotate, K.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
[CrossRef]

Newson, T. P.

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

Roger, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

Soto, M. A.

Soto, M. A.

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[CrossRef]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Zou, W.

IEEE Photon. Technol. Lett. (3)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9(7), 979–981 (1997).
[CrossRef]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a Dispersion-Shifted Fiber for Simultaneous Measurement of Distributed Strain and Temperature Through Brillouin Frequency Shift,” IEEE Photon. Technol. Lett. 13(10), 1094–1096 (2001).
[CrossRef]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photon. Technol. Lett. 21(20), 1523–1525 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (2)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[CrossRef]

Nat. Photonics (1)

“Great potential,” Nat. Photonics 2(3), 143–158 (2008).

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental set-up.

Fig. 2
Fig. 2

(a) Full spectrum of the used FP laser and (b) detail of backscattered light spectrum.

Fig. 3
Fig. 3

Brillouin spectrum as a function of fiber distance, using FP laser with 127-bit Simplex coding.

Fig. 4
Fig. 4

(a) BFS along the sensing fiber, when using a DFB laser (single pulses) and a FP laser (Simplex coding and single pulses). (b) Error in BFS measurement vs distance for DFB laser (single pulses) and FP laser (Simplex coding).

Fig. 5
Fig. 5

Anti-Stokes Raman traces for both DFB laser (with single pulses) and FP laser (127-bit Simplex coding).

Fig. 6
Fig. 6

(a) Temperature and (b) strain resolution vs distance, for DFB (single pulses) and FP laser (Simplex coding).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P R a y ( z ) P A S ( z ) P R a y ( z ) P A S ( T , z ) exp { 0 z [ α R a y ( z ) α A S ( z ) ] d ς }
Δ ε ( z ) = Δ ν B ( z ) C ν B T Δ T ( z ) C ν B ε

Metrics