Abstract

A low power Mach-Zehnder interferometer thermo-optic switch using free-standing silicon-on-insulator strip waveguides is demonstrated. The air gap provides thermal isolation between the waveguide interferometer arms and the underlying silicon substrate. The highly confined optical modes of the strip waveguides enable miniature heated cross-sections. The heating efficiency from on-chip resistive heaters is enhanced. Measurements of fabricated devices using 100 μm arm lengths at 1550 nm wavelength result in a switching power of 540 μW, a 10% - 90% switching rise time of 141 μs, and an extinction ratio of 25 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Iannone and R. Sabella, “Optical path technologies: a comparison among different cross-connect architectures,” J. Lightwave Technol. 14(10), 2184–2196 (1996).
    [CrossRef]
  2. K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
    [CrossRef]
  3. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low Loss and High Extinction Ratio Strictly Nonblocking 16 × 16 Thermooptic Matrix Switch on 6-in Wafer Using Silica-Based Planar Lightwave Circuit Technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
    [CrossRef]
  4. J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
    [CrossRef]
  5. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [CrossRef]
  6. D. R. Lide, Handbook of Chemistry and Physics, (CRC, 2008).
  7. G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Electron. Lett. 27(2), 118–120 (1991).
    [CrossRef]
  8. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005).
    [CrossRef] [PubMed]
  9. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
    [CrossRef]
  10. S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
    [CrossRef]
  11. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [CrossRef] [PubMed]
  12. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
    [CrossRef]
  13. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
    [CrossRef] [PubMed]
  14. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  15. C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
    [CrossRef]

2009

2008

2005

2004

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

2003

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

2001

2000

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[CrossRef]

1997

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

1996

E. Iannone and R. Sabella, “Optical path technologies: a comparison among different cross-connect architectures,” J. Lightwave Technol. 14(10), 2184–2196 (1996).
[CrossRef]

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

1992

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

1991

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Electron. Lett. 27(2), 118–120 (1991).
[CrossRef]

Agarwal, A. M.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Arakawa, Y.

Arndt, J.

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[CrossRef]

Cheben, P.

Chu, T.

Clark, S. A.

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

Culshaw, B.

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

Dawnay, E. J. C.

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

Day, I. E.

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

Delâge, A.

Densmore, A.

Espinola, R. L.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Fang, Q.

Foresi, J. S.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Goh, T.

Hattori, K.

Himeno, A.

Iannone, E.

E. Iannone and R. Sabella, “Optical path technologies: a comparison among different cross-connect architectures,” J. Lightwave Technol. 14(10), 2184–2196 (1996).
[CrossRef]

Ishida, S.

Janz, S.

Kimerling, L. C.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Kwong, D. L.

Lapointe, J.

Liao, L.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Lim, D. R.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Liow, T. Y.

Lo, G. Q.

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Ma, R.

Ohmori, Y.

Okuno, M.

Osgood, R. M.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Reano, R. M.

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

Sabella, R.

E. Iannone and R. Sabella, “Optical path technologies: a comparison among different cross-connect architectures,” J. Lightwave Technol. 14(10), 2184–2196 (1996).
[CrossRef]

Sato, K.

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

Schmid, J. H.

Song, J.

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Sun, P.

Tan, C. Z.

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[CrossRef]

Tao, S. H.

Treyz, G. V.

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Electron. Lett. 27(2), 118–120 (1991).
[CrossRef]

Tsai, M.-C.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Vachon, M.

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Xu, D.-X.

Yamada, H.

Yardley, J. T.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Yasu, M.

Yu, M. B.

Electron. Lett.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm,” Electron. Lett. 27(2), 118–120 (1991).
[CrossRef]

IEEE Commun. Mag.

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

J. Lightwave Technol.

J. Phys. Chem. Solids

C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61(8), 1315–1320 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

S. A. Clark, B. Culshaw, E. J. C. Dawnay, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
[CrossRef]

Other

D. R. Lide, Handbook of Chemistry and Physics, (CRC, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the MZI thermo-optic switch with free-standing SOI waveguides; the interferometer arms consist of silicon strip waveguides embedded in silicon dioxide which are released from the silicon substrate. Platinum heaters are deposited on top of the released arms. The silicon waveguide core cross-sectional width and height are 450 nm and 250 nm, respectively. The cladding width w is 2.9 μm, the cladding height h is 2.1 μm, and the gap g is 4.5 μm. The interferometer arm length L is 100 μm.

Fig. 2
Fig. 2

Fabrication process for the free-standing SOI strip waveguides: (a) initial silicon circuits, deposition of PECVD SiO2, and deposition of the Ni mask, (b) FIB direct writing of patterns on the Ni mask, (c) reactive ion etching to release SOI waveguides, (d) removal of the Ni mask, (e) deposition of Pt resistive heaters.

Fig. 3
Fig. 3

Optical micrograph of MZI thermo-optic switch with 100-µm-long SOI waveguide arms released from the substrate. The inset scanning electron micrograph highlights one free-standing interferometer arm. Two SiO2 struts provide mechanical stability. Cantilever couplers are used for fiber coupling to the switch.

Fig. 4
Fig. 4

Characterization measurements of thermo-optic switch with free-standing SOI waveguides. The optical wavelength is 1550 nm and the polarization is quasi-TE. (a) Optical transmission versus electrical heating power; the switching power is 540 μW; (b) Rise time measurement; the 10% - 90% switching rise time is 141 μs.

Metrics