Abstract

A flexible polymeric Bragg reflector is fabricated for the purpose of demonstrating widely tunable lasers with a compact simple structure. The external feedback of the Bragg reflected light into a superluminescent laser diode produces the lasing of a certain resonance wavelength. The highly elastic polymer device enables the direct tuning of the Bragg wavelength by controlling the imposed strain and provides a much wider tuning range than silica fiber Bragg gratings or thermo-optic tuned polymer devices. Both compressive and tensile strains are applied within the range from −36000 με to 35000 με, so as to accomplish the continuous tuning of the Bragg reflection wavelength over a range of up to 100 nm. The external feedback laser with the tunable Bragg reflector exhibits a repetitive wavelength tuning range of 80 nm with a side mode suppression ratio of 35 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren, “Tunable semiconductor Lasers: A Tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
    [CrossRef]
  2. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [CrossRef]
  3. K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  5. Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
    [CrossRef]
  6. L. A. Johansson, Y. A. Akulova, C. Coldren, and L. A. Coldren, “Improving the Performance of Sampled-Grating DBR Laser-Based Analog Optical Transmitters,” J. Lightwave Technol. 26(7), 807–815 (2008).
    [CrossRef]
  7. K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
    [CrossRef]
  8. Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
    [CrossRef]
  9. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  10. Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
    [CrossRef]
  11. Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
    [CrossRef]
  12. M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
    [CrossRef]
  13. S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
    [CrossRef]
  14. H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
    [CrossRef]
  15. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.- Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact Lasers based on thermo-optic polymer waveguide with Bragg grating,” Opt. Express 16(22), 18194–18201 (2008).
    [CrossRef] [PubMed]
  16. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
    [CrossRef]
  17. K.-J. Kim, J.-K. Seo, and M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
    [CrossRef] [PubMed]
  18. M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
    [CrossRef]
  19. K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
    [CrossRef]

2008 (4)

2007 (1)

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

2006 (3)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

2005 (2)

M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
[CrossRef]

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

2004 (3)

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren, “Tunable semiconductor Lasers: A Tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[CrossRef]

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

2003 (2)

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

2002 (2)

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

2001 (1)

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

Akulova, Y.

Akulova, Y. A.

L. A. Johansson, Y. A. Akulova, C. Coldren, and L. A. Coldren, “Improving the Performance of Sampled-Grating DBR Laser-Based Analog Optical Transmitters,” J. Lightwave Technol. 26(7), 807–815 (2008).
[CrossRef]

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Barton, J. S.

Butler, S. A.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Chang, Y.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Cho, S.-H.

M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
[CrossRef]

Chu, Sai

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Coldren, C.

Coldren, C.W.

Coldren, E.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Coldren, L. A.

L. A. Johansson, Y. A. Akulova, C. Coldren, and L. A. Coldren, “Improving the Performance of Sampled-Grating DBR Laser-Based Analog Optical Transmitters,” J. Lightwave Technol. 26(7), 807–815 (2008).
[CrossRef]

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren, “Tunable semiconductor Lasers: A Tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[CrossRef]

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Dahl, S.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Dalton, L. R.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Deki, Y.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Doi, M.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Erlig, H.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Farsund, Ø.

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Fetterman, H. R.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Fish, G. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren, “Tunable semiconductor Lasers: A Tutorial,” J. Lightwave Technol. 22, 193–202 (2004).
[CrossRef]

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Fujimoto, J. G.

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Goh, C. S.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Han, S.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Hashimoto, N.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Hatanaka, T.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Havsgård, G. B.

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Hegblom, S. K.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Horie, M.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Huber, R.

Hwang, W.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Ibsen, M.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Johansson, L.

Johansson, L. A.

Ju, J. J.

Kikuchi, K.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Kim, D.-H.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

Kim, J.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Kim, K.-J.

K.-J. Kim, J.-K. Seo, and M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[CrossRef]

Kim, M.-

King, Oliver

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Kozodoy, A. P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Larson, M. P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Lee, C.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Lee, H.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Lee, H.-J.

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.- Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact Lasers based on thermo-optic polymer waveguide with Bragg grating,” Opt. Express 16(22), 18194–18201 (2008).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
[CrossRef]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

Lee, S.-S.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Mack, T. A.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Miyazaki, T.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Morito, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Nakagawa, M. C.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Nakazawa, T.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Noh, Y.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Noh, Y.-O.

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.- Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact Lasers based on thermo-optic polymer waveguide with Bragg grating,” Opt. Express 16(22), 18194–18201 (2008).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Oh, M.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Oh, M.-C.

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[CrossRef]

K.-J. Kim, J.-K. Seo, and M.-C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.- Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact Lasers based on thermo-optic polymer waveguide with Bragg grating,” Opt. Express 16(22), 18194–18201 (2008).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Oh, S. H.

Penniman, T.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Ping-Chiek Koh, C. L.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Pran, K.

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Sagvolden, G.

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Schow, P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Seo, J.-K.

Set, S. Y.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Song, H.-C.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

Steier, W. H.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Strand, C. W.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Szep, A.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Takabayashi, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Takada, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Takaesu, S.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Takahashi, M.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Takeuchi, T.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Tomabechi, S.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Tsap, B.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Wang, G.

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Watanabe, S.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Wipiejewski,

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Wojtkowski, M.

Won, Y.

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Won, Y.-H.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Yamazaki, H.

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

Zhang, C.

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Zhang, H.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003).
[CrossRef]

Electron. Lett. (2)

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett. 40(19), 1187–1188 (2004).
[CrossRef]

Y. Deki, T. Hatanaka, M. Takahashi, T. Takeuchi, S. Watanabe, S. Takaesu, T. Miyazaki, M. Horie, and H. Yamazaki, “Wide-wavelength tunable lasers with 100 GHz FSR ring resonators,” Electron. Lett. 43(4), 225–226 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, Oliver King, V. Van, Sai Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely Tunable Electroabsorption-Modulated Sampled-Grating DBR Laser Transmitter,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, “Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K.-J. Kim and M.-C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photon. Technol. Lett. 20(4), 288–290 (2008).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17(10), 2122–2124 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

K. Pran, G. B. Havsgård, G. Sagvolden, Ø. Farsund, and G. Wang, “Wavelength multiplexed fibre Bragg grating system for high-strain health monitoring applications,” Meas. Sci. Technol. 13, 471–476 (2002).

Opt. Commun. (3)

Y. Noh, C. Lee, J. Kim, W. Hwang, Y. Won, H. Lee, S. Han, and M. Oh, “Polymer waveguide variable optical attenuator and its reliability,” Opt. Commun. 242(4-6), 533–540 (2004).
[CrossRef]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

M.-C. Oh, S.-H. Cho, and H.-J. Lee, “Fabrication of Large-Core Single-Mode Polymer Waveguide Connecting to a Thermally Expanded Core Fiber for Increased Alignment Tolerance,” Opt. Commun. 246(4-6), 337–343 (2005).
[CrossRef]

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the wavelength tunable laser operated by applying mechanical stress to impose a strain on a flexible polymer waveguide with Bragg reflector.

Fig. 2
Fig. 2

A photograph of the flexible Bragg grating device: a 5-mm long flexible Bragg grating waveguide device is shown with glass blocks attached for the fiber pigtail.

Fig. 3
Fig. 3

Tunable filter characterization setup with the flexible device attached to a holding fixture so as to impose both compressive and tensile strains.

Fig. 4
Fig. 4

Transmission and reflection spectra obtained from (a) the design results compared to (b) the experimental results measured from the flexible polymer grating device.

Fig. 5
Fig. 5

Wavelength tuning characteristics of the Bragg reflector: the peak wavelength of the reflection spectrum was spanned from 1486 nm to 1586 nm, corresponding to the movement of the motorized stage from −102 μm to 98 μm, respectively.

Fig. 6
Fig. 6

Output spectrum of external cavity laser with an initial lasing wavelength at 1536.9 nm, and a side mode suppression ratio of 35 dB. The inset shows the spectrum measured with a resolution of 0.05 nm in the OSA to obtain a 20-dB bandwidth of 0.12 nm.

Fig. 7
Fig. 7

Wavelength tuning characteristics of the polymer Bragg grating tunable laser: (a) 0.05-nm OSA resolution measurement for 10 nm tuning, and (b) 80-nm tuning from 1495 nm to 1575 nm corresponding to a compressive strain of 30000 με and tensile strain of 27143 με.

Fig. 8
Fig. 8

Repeatable measurement of the lasing wavelengths for 2 cycles of tensile and compressive strain applications. Each wavelength repeatedly produced for 4 times drops on the same point with a deviation of less than 0.2 nm exhibiting an excellent linearity, in which a strain tuning efficiency resulted in 1.40 pm/με.

Metrics