K. Ono and K. Eriguchi, “Modeling of plasma-surface interactions and profile evolution during dry etching,” J. Plasma Fusion Res. 85, 165–176 (2009) (Japanese).

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

C. F. Huang and H. M. Li, ““Design optimization of chip antennas using the GA-FDTD approach”, Int. J. RF Microw,” Computer-Aided Engineering 15, 116–127 (2005).

H. Kikuta, H. Toyota, and W. Yu, “Optical Elements with Subwavelength Structured Surfaces,” Opt. Rev. 10(2), 63–73 (2003).

[CrossRef]

G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003).

[CrossRef]
[PubMed]

Y. Okuno, M. Fujimoto, and T. Matsuda, “Numerical evaluation of diffractive optical elements with binary subwavelength structures,” IEIC Tech. Rep. 100, 157–162 (2001) (Japanese).

J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23(17), 1343–1345 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-Based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[CrossRef]
[PubMed]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans 22, 191–202 (1980).

J. P. Berenger, “A perfectly matched layer for the absorption of electro-magnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).

[CrossRef]

K. Ono and K. Eriguchi, “Modeling of plasma-surface interactions and profile evolution during dry etching,” J. Plasma Fusion Res. 85, 165–176 (2009) (Japanese).

Y. Okuno, M. Fujimoto, and T. Matsuda, “Numerical evaluation of diffractive optical elements with binary subwavelength structures,” IEIC Tech. Rep. 100, 157–162 (2001) (Japanese).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[CrossRef]
[PubMed]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).

[CrossRef]

D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).

[CrossRef]

C. F. Huang and H. M. Li, ““Design optimization of chip antennas using the GA-FDTD approach”, Int. J. RF Microw,” Computer-Aided Engineering 15, 116–127 (2005).

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

H. Kikuta, H. Toyota, and W. Yu, “Optical Elements with Subwavelength Structured Surfaces,” Opt. Rev. 10(2), 63–73 (2003).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[CrossRef]
[PubMed]

C. F. Huang and H. M. Li, ““Design optimization of chip antennas using the GA-FDTD approach”, Int. J. RF Microw,” Computer-Aided Engineering 15, 116–127 (2005).

J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23(17), 1343–1345 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-Based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).

[CrossRef]

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

Y. Okuno, M. Fujimoto, and T. Matsuda, “Numerical evaluation of diffractive optical elements with binary subwavelength structures,” IEIC Tech. Rep. 100, 157–162 (2001) (Japanese).

D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-Based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).

[CrossRef]

J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23(17), 1343–1345 (1998).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).

[CrossRef]

D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).

[CrossRef]

Y. Okuno, M. Fujimoto, and T. Matsuda, “Numerical evaluation of diffractive optical elements with binary subwavelength structures,” IEIC Tech. Rep. 100, 157–162 (2001) (Japanese).

K. Ono and K. Eriguchi, “Modeling of plasma-surface interactions and profile evolution during dry etching,” J. Plasma Fusion Res. 85, 165–176 (2009) (Japanese).

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).

[CrossRef]

D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-Based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).

[CrossRef]

J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23(17), 1343–1345 (1998).

[CrossRef]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans 22, 191–202 (1980).

H. Kikuta, H. Toyota, and W. Yu, “Optical Elements with Subwavelength Structured Surfaces,” Opt. Rev. 10(2), 63–73 (2003).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[CrossRef]
[PubMed]

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

H. Kikuta, H. Toyota, and W. Yu, “Optical Elements with Subwavelength Structured Surfaces,” Opt. Rev. 10(2), 63–73 (2003).

[CrossRef]

C. F. Huang and H. M. Li, ““Design optimization of chip antennas using the GA-FDTD approach”, Int. J. RF Microw,” Computer-Aided Engineering 15, 116–127 (2005).

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans 22, 191–202 (1980).

H. Jimbow, C. Yatabe, K. L. Ishikawa, Y. Yamada, and K. Masuda, “Design of subwavelength diffractive optical elements using genetic algorithm and FDTD method,” IEEJ Trans. EIS 127(9), 1298–1303 (2007) (Japanese).

[CrossRef]

Y. Okuno, M. Fujimoto, and T. Matsuda, “Numerical evaluation of diffractive optical elements with binary subwavelength structures,” IEIC Tech. Rep. 100, 157–162 (2001) (Japanese).

J. P. Berenger, “A perfectly matched layer for the absorption of electro-magnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).

[CrossRef]

D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-Based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).

[CrossRef]

E. G. Johnson and M. A. G. Abushagur, “Microgenetic-algorithm optimization methods applied to dielectric gratings,” J. Opt. Soc. Am. A 12(5), 1152–1160 (1995).

[CrossRef]

K. Ono and K. Eriguchi, “Modeling of plasma-surface interactions and profile evolution during dry etching,” J. Plasma Fusion Res. 85, 165–176 (2009) (Japanese).

J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23(17), 1343–1345 (1998).

[CrossRef]

G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003).

[CrossRef]
[PubMed]

H. Kikuta, H. Toyota, and W. Yu, “Optical Elements with Subwavelength Structured Surfaces,” Opt. Rev. 10(2), 63–73 (2003).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[CrossRef]
[PubMed]

M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1998).

A. Taflove, and S. C. Hagness, Computional Electrodynamics: The Finite-Difference Time-Domain Method, Chap. 12 (Artech House, 2005).

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley Series in Lasers and Applications) (John Wiley & Sons, 2002).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).