Abstract

Temperature diffusivity of laser micro-structured regions in sapphire is determined by a temperature wave method with a lateral resolution reduced to ~ 10 μm using a directly sputtered micro-sensor and heater. A record high reduction of the temperature diffusivity of sapphire by 12% from its (1.26±0.02)×10-5 m2/s in-bulk value inside the femtosecond laser-structured volumes is determined; in a BK7 glass (~ 4.8×10-7 m2/s), a 2% decrease of the thermal diffusivity has been observed. Origin of the reduction is consistent with disorder and scattering of phonons around the laser photo-modified micro-volumes. The stress-induced birefringence is directly measured by polariscopy together with its radial distribution, and azimuthal orientation of the polarization ellipsis near the laser structured regions in sapphire. The maximum birefringence of Δn≃1×10-3 is achieved without crack formation and corresponds to a local stress of ~ 1.3 GPa. The stress (and birefringence) decay radially with a single-exponential constant of τR = 24 μm while the azimuthal orientation of the polarization ellipsis is spiraling around the laser structured volume. Such structures are promising in waveguiding and lasing applications of optical vortices where spatial control of birefringence and optical activity are required.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
    [CrossRef]
  2. S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mat. 1, 217-224 (2002).
    [CrossRef]
  3. Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
    [CrossRef]
  4. S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
    [CrossRef]
  5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
    [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  7. L. Shah, A. Arai, S. Eaton, and P. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13, 1999-2006 (2005).
    [CrossRef] [PubMed]
  8. D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Sol. 354, 416-424 (2009).
    [CrossRef]
  9. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, "Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing," Opt. Lett. 27, 1938-1940 (2002).
    [CrossRef]
  10. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
    [CrossRef]
  11. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, "High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines," Opt. Express 17, 10076-10081 (2009).
    [CrossRef] [PubMed]
  12. Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
    [CrossRef] [PubMed]
  13. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, "Ultrafast laser photo inscription of polarization sensitive devices in bulk silica glass," Opt. Express 17, 9515-9525 (2009).
    [CrossRef] [PubMed]
  14. J. Siebenmorgen, T. Calmano, O. Hellmig, K. Petermann, and G. Huber, "Efficient femtosecond laser written Nd:YAG channel waveguide laser with an output power of more than 1 W,", Technical Digest, CLEO/Europe-EQEC Conference, 2009, paper CJ7.1.
  15. J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
    [CrossRef]
  16. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008).
    [CrossRef] [PubMed]
  17. J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009).
    [CrossRef]
  18. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
    [CrossRef]
  19. T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
    [CrossRef]
  20. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
    [CrossRef]
  21. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
    [CrossRef]
  22. M. Shribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2003).
    [CrossRef] [PubMed]
  23. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
    [CrossRef]
  24. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
    [CrossRef]
  25. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
    [CrossRef]
  26. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
    [CrossRef] [PubMed]
  27. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
    [CrossRef]
  28. B. Rogers, S. Pennathur, and J. Adams, Nanotechnology: understanding small systems (CRC Press Taylor and Francis Group, Boca Raton, 2008).
  29. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
    [CrossRef]
  30. M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
    [CrossRef]
  31. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
    [CrossRef] [PubMed]
  32. H. Aben, Photoelasticity of glass (Springer-Verlag Berlin, 1993).
  33. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
    [CrossRef] [PubMed]
  34. V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
    [CrossRef]
  35. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Progress in Optics 39, 291-372 (1999).
    [CrossRef]
  36. M. Berry, "Making waves in physics," Nature 403, 21 (2000).
    [CrossRef] [PubMed]
  37. K. T. Gahagan and G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  38. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
    [CrossRef] [PubMed]
  39. G. Foo, D. M. Palacios, and G. A. Swartzlander, "Optical vortex coronagraph," Opt. Lett. 30, 3308-3310 (2005).
    [CrossRef]
  40. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
    [CrossRef] [PubMed]
  41. P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.
  42. R. A. L. Jones, Soft Condensed Matter (Oxford University Press, 2002).
  43. A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007).
    [CrossRef]
  44. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
    [CrossRef]
  45. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
    [CrossRef]
  46. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
    [CrossRef]
  47. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Dynamics of optical spin-orbit coupling in uniaxial crystals," Opt. Lett. 34, 1021-1023 (2009).
    [CrossRef] [PubMed]
  48. A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
    [CrossRef]
  49. L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef] [PubMed]
  50. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner," Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  51. H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999).
    [CrossRef]
  52. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, "Optical, thermo-optic, electrooptic, and photoelastic properties of bismuth germanate ABi4Ge3O12B," Appl. Opt. 35, 3562 - 3569 (1996).
    [CrossRef] [PubMed]
  53. http://en.wikipedia.org/wiki/Hooke’s_law
  54. J. W. Kysar, "Path of light in near crack tip region in anisotropic medium and under mixed-mode loading," Int. J. Sol. Struct. 38, 5963-5973 (2001).
    [CrossRef]
  55. J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968).
    [CrossRef]
  56. J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
    [CrossRef]
  57. T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).
  58. M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
    [CrossRef]
  59. K. Syassen, "Ruby under pressure," High Pressure Research 28, 75-126 (2008).
    [CrossRef]

2010 (2)

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

2009 (11)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Sol. 354, 416-424 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, "High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines," Opt. Express 17, 10076-10081 (2009).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, "Ultrafast laser photo inscription of polarization sensitive devices in bulk silica glass," Opt. Express 17, 9515-9525 (2009).
[CrossRef] [PubMed]

J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Dynamics of optical spin-orbit coupling in uniaxial crystals," Opt. Lett. 34, 1021-1023 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

K. Syassen, "Ruby under pressure," High Pressure Research 28, 75-126 (2008).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008).
[CrossRef] [PubMed]

M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
[CrossRef]

2007 (1)

A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007).
[CrossRef]

2006 (8)

L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

2003 (7)

M. Shribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2003).
[CrossRef] [PubMed]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
[CrossRef] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

2002 (2)

2001 (2)

J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
[CrossRef]

J. W. Kysar, "Path of light in near crack tip region in anisotropic medium and under mixed-mode loading," Int. J. Sol. Struct. 38, 5963-5973 (2001).
[CrossRef]

2000 (2)

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

M. Berry, "Making waves in physics," Nature 403, 21 (2000).
[CrossRef] [PubMed]

1999 (3)

L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Progress in Optics 39, 291-372 (1999).
[CrossRef]

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

1994 (1)

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

1968 (1)

J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968).
[CrossRef]

1967 (1)

T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).

Allen, L.

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Antoniadis, K. D.

M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
[CrossRef]

Arai, A.

Assael, M. J.

M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
[CrossRef]

Audouard, E.

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Progress in Optics 39, 291-372 (1999).
[CrossRef]

Bado, P.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
[CrossRef] [PubMed]

Bellouard, Y.

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Benayas, A.

Beresna, M.

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

Berry, M.

M. Berry, "Making waves in physics," Nature 403, 21 (2000).
[CrossRef] [PubMed]

Brasselet, E.

Brown, T. G.

A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007).
[CrossRef]

Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
[CrossRef] [PubMed]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Cerullo, G.

Chen, G.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

Chen, K. P.

Chen, W. J.

Cheng, G.

Ciattoni, A.

A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
[CrossRef]

Cincotti, G.

A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
[CrossRef]

Colomb, T.

Conrad, D. C.

Davis, T. A.

T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).

Day, G. W.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Depeursinge, C.

Desyatnikov, A. S.

Dholakia, K.

Dugan, M.

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Eaton, S.

Eaton, S. M.

Ebisui, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

Foo, G.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

Gahagan, K. T.

Gamaly, E. E.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Gertus, T.

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

Gupta, Y. M.

J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
[CrossRef]

Hale, P. D.

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hare, D. E.

J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
[CrossRef]

Harris, M.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

Hasegawa, I.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

Hashimoto, T.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

Herman, P.

Herman, P. R.

Higuchi, M.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Hill, C. A.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

Ho, S.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Itoh, K.

Izdebskaya, Y.

Jaque, D.

Jarutis, V.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

Juodkazis, S.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999).
[CrossRef]

Kimura, S.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

Kivshar, Y. S.

Krol, D. M.

D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Sol. 354, 416-424 (2009).
[CrossRef]

Krolikowski, W.

Kudryashov, I.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

Kysar, J. W.

J. W. Kysar, "Path of light in near crack tip region in anisotropic medium and under mixed-mode loading," Int. J. Sol. Struct. 38, 5963-5973 (2001).
[CrossRef]

Lan, Y.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

Laporta, P.

Lee, K. S.

Leong, C.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Li, J. Z.

Luther-Davies, B.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Marangoni, M.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Matsuo, S.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Mauclair, C.

Mazur, E.

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mat. 1, 217-224 (2002).
[CrossRef]

McMillen, B.

Minnich, A. J.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999).
[CrossRef]

Mishchik, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

Morikawa, J.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

Ng, M. L.

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Nishii, J.

Nishimura, K.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Ogawa, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Okada, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

Oldenbourg, R.

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

Osellame, R.

Padgett, M. J.

Palacios, D. M.

Palma, C.

A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Polli, D.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Ramponi, R.

Reintjes, J.

J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968).
[CrossRef]

Ren, Z.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

Rose, A. H.

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

Said, A. A.

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006).
[CrossRef] [PubMed]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Saito, A.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

Sakai, S.

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

Schulz, M. B.

J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968).
[CrossRef]

Shah, L.

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

Shikata, M.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Shribak, M.

Shvedov, V.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Silvestri, S. D.

Simpson, N. B.

Sowa, S.

Spilman, A. K.

A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007).
[CrossRef]

Stoian, R.

Sugahara, T.

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

Sun, H.-B.

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mat. 1, 217-224 (2002).
[CrossRef]

Surovtsev, N. V.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

Swartzlander, G. A.

Syassen, K.

K. Syassen, "Ruby under pressure," High Pressure Research 28, 75-126 (2008).
[CrossRef]

Taccheo, S.

Takahashi, J.-I.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Takahashi, T.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Tamaki, T.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Tapster, P. R.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

Tikhonchuk, V.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Tomasiunas, R.

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Tünnermann, S. N. A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Tuzhilin, D.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

Ueno, K.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

Urata, Y.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Vanagas, E.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

Vaughan, J. M.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

Vedam, K.

T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).

Wada, S.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Waki, R.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

Watanabe, W.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Williams, P. A.

Winey, J. M.

J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Wu, J.

M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

Yokota, Y.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

Zhang, H.

Zhu, Z.

Adv. Func. Mat. (1)

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010).
[CrossRef]

Adv. Mat. (1)

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Optics (1)

A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007).
[CrossRef]

Appl. Phys. A (3)

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Appl. Phys. A. (2)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010).
[CrossRef]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003).
[CrossRef]

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009).
[CrossRef]

High Pressure Research (1)

K. Syassen, "Ruby under pressure," High Pressure Research 28, 75-126 (2008).
[CrossRef]

Int. J. Sol. Struct. (1)

J. W. Kysar, "Path of light in near crack tip region in anisotropic medium and under mixed-mode loading," Int. J. Sol. Struct. 38, 5963-5973 (2001).
[CrossRef]

Int. J. Thermophys. (1)

M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008).
[CrossRef]

J. Appl. Phys. (6)

J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968).
[CrossRef]

J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001).
[CrossRef]

T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).

J. Non-Cryst. Sol. (1)

D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Sol. 354, 416-424 (2009).
[CrossRef]

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009).
[CrossRef]

Laser Chemistry (1)

M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008).
[CrossRef]

Laser Photon. Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009).
[CrossRef]

Nature (2)

M. Berry, "Making waves in physics," Nature 403, 21 (2000).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Nature Mat. (1)

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mat. 1, 217-224 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. A (1)

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (1)

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Phys. Rev. E (1)

A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
[CrossRef] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999).
[CrossRef]

Progress in Optics (1)

L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Progress in Optics 39, 291-372 (1999).
[CrossRef]

SPIE Proc. (1)

P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.

Other (5)

R. A. L. Jones, Soft Condensed Matter (Oxford University Press, 2002).

http://en.wikipedia.org/wiki/Hooke’s_law

H. Aben, Photoelasticity of glass (Springer-Verlag Berlin, 1993).

B. Rogers, S. Pennathur, and J. Adams, Nanotechnology: understanding small systems (CRC Press Taylor and Francis Group, Boca Raton, 2008).

J. Siebenmorgen, T. Calmano, O. Hellmig, K. Petermann, and G. Huber, "Efficient femtosecond laser written Nd:YAG channel waveguide laser with an output power of more than 1 W,", Technical Digest, CLEO/Europe-EQEC Conference, 2009, paper CJ7.1.

Supplementary Material (1)

» Media 1: PDF (295 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Al2O3 wafer padded with sputtered Au and Al electrodes used for thermal diffusivity measurements with a close up polariscope view (b) of the laser-structured volume. The sensor (S) and reference (host) positions are marked, respectively. Inset in (b) shows simulated transmission profile according to eqn. 3; the transmission pattern is orientated in the same way as in actual experiments. (c) Schematics of the thermal wave propagation from the heater (on bottom) towards the hot-junction sensor (on top); not to scale. See, the experimental section for details.

Fig. 2.
Fig. 2.

(a) Normalized thermal diffusivity, χShost, (see, Fig. 1(b)) through the laser-structured (1), adjacent (3) regions vs number of measurement cycles. Error bars are 2%. (b) Polariscope image shows a region laser-structured by 80 nJ/pulse energy with two pulse per irradiation site. An approximate location and size of the hot-junction sensors are marked. Inset shows a slanted view of the computer generated 3D pattern of the irradiation spots (circles) and the movement path (lines).

Fig. 3.
Fig. 3.

Polariscopy data. (a) The amplitude, i.e., retardance distribution ( Γ ( x , y ) / 2 π × λ 0 ) [nm] on a c-plane of sapphire sample with a fs-laser structured region of 30 μm in diameter at the center (as shown in Fig. 2(b)). (b) The azimuth or distribution of the slow axis orientation, Ψ(x,y). The arrows are pointing to location of a pair of topological phase defects where birefringence and the orientation of the polarization ellipsis are undefined. Scale, radians. (c) Horizontal and diagonal cross-sections of the birefringence, Δn(x, y), map given in (a); calculated from experimentally measured retardance Γ(x, y)/2 = π λ 0 Δn(x,y)d (λ0 = 546 nm, d ≃ 90 μm). The exponential 1/e fits with a birefringence (stress) relaxation constant τR = 24 μm are shown as eye guides. Red and grey marked regions indicate the laser structured locations. Pulse energy was 80 nJ/pulse. Stress-induced crack formation is demonstrated at the corners of volume with a square footprint (Media 1); this proves a stress-related origin of the birefringence rather than form-birefringence.

Fig. 4.
Fig. 4.

(a) The azimuth, Ψ(x, y), (grey scale map 0-π) map around two regions of smaller Δnmax ≃ 10-3) (1) and by 50% larger (2) birefringence; the dial-markers shows the orientation of the azimuth; pulse energies were 80 (1) and 120 nJ/pulse (2), respectively. The central laser structured regions have the same 30 μm diameters (marked by circles). (b) Close up view of the central part of region (1) with two singularities of azimuthal orientation of the polarization ellipsis. A round trip phase changes by π for the two singularities (marked by arrows).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = π f χ d θ 0 ,
k c = ρ c p v Λ / 3 ,
I t ( φ , Δ n ) = I 0 sin 2 ( 2 φ ) sin 2 ( Γ/ 2 )

Metrics