Abstract

The lidar signature from a collection of bubbles is proportional to the volume backscatter coefficient at a scattering angle of 180°. This quantity, calculated using a combination of geometric optics and diffraction, is proportional to the void fraction of the bubbles in the water for any bubble size distribution. The constant of proportionality is 233 m−1 sr−1 for clean bubbles, slightly less for bubbles coated with a thin layer of organic material, and as large as 1445 m−1 sr−1 for a thick coating of protein.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Woolf, “Bubbles and the air-sea transfer velocity of gasses,” Atmos.-Ocean 31, 517–540 (1993).
    [CrossRef]
  2. R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
    [CrossRef]
  3. G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
    [CrossRef]
  4. E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
    [CrossRef]
  5. W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
    [CrossRef]
  6. A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
    [CrossRef]
  7. M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994).
    [CrossRef]
  8. J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
    [CrossRef] [PubMed]
  9. M. V. Hall, “A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz,” J. Acoust. Soc. Am. 86(3), 1103–1117 (1989).
    [CrossRef]
  10. P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000).
    [CrossRef]
  11. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37(27), 6525–6536 (1998).
    [CrossRef]
  12. E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
    [CrossRef]
  13. X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
    [CrossRef]
  14. X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004).
    [CrossRef] [PubMed]
  15. M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
    [CrossRef]
  16. L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
    [CrossRef]
  17. W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
    [CrossRef] [PubMed]
  18. W. P. Arnott and P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5(4), 496–506 (1988).
    [CrossRef]
  19. P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983).
    [CrossRef]
  20. B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981).
    [CrossRef] [PubMed]
  21. R. E. Glazman, “Effects of adsorbed films on gas bubble radial oscillations,” J. Acoust. Soc. Am. 74(3), 980–986 (1983).
    [CrossRef]
  22. E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001).
    [CrossRef]
  23. W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
    [CrossRef]
  24. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [CrossRef]
  25. G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002).
    [CrossRef] [PubMed]
  26. M. V. Trevorrow, “Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance,” J. Acoust. Soc. Am. 114(5), 2672–2684 (2003).
    [CrossRef] [PubMed]

2009 (4)

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

2007 (3)

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

2006 (1)

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

2004 (2)

X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004).
[CrossRef] [PubMed]

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

2003 (1)

M. V. Trevorrow, “Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance,” J. Acoust. Soc. Am. 114(5), 2672–2684 (2003).
[CrossRef] [PubMed]

2002 (2)

G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002).
[CrossRef] [PubMed]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

2001 (2)

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001).
[CrossRef]

2000 (1)

P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000).
[CrossRef]

1998 (1)

1994 (1)

M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994).
[CrossRef]

1993 (1)

D. K. Woolf, “Bubbles and the air-sea transfer velocity of gasses,” Atmos.-Ocean 31, 517–540 (1993).
[CrossRef]

1989 (1)

M. V. Hall, “A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz,” J. Acoust. Soc. Am. 86(3), 1103–1117 (1989).
[CrossRef]

1988 (1)

1983 (2)

P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983).
[CrossRef]

R. E. Glazman, “Effects of adsorbed films on gas bubble radial oscillations,” J. Acoust. Soc. Am. 74(3), 980–986 (1983).
[CrossRef]

1981 (1)

B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

1954 (1)

Aquilina, A.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Arnott, W. P.

Berndt, C.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Beszczynska-Möller, A.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Bissett, W. P.

Bolton, C.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Bortkovskii, R. S.

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

Chabert, A.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Cooke, R. C.

B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Cox, C.

Crocker, A. J.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Dahl, E. E.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Dam, H. G.

E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001).
[CrossRef]

Davis, A. J.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Deane, G. B.

G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002).
[CrossRef] [PubMed]

Egorov, B. N.

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

Fee, D.

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

Feingold, G.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Fisher, R. E.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Flagan, R. C.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Garcés, M.

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

Gates, H.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Glazman, R. E.

R. E. Glazman, “Effects of adsorbed films on gas bubble radial oscillations,” J. Acoust. Soc. Am. 74(3), 980–986 (1983).
[CrossRef]

Green, D.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Hall, M. V.

M. V. Hall, “A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz,” J. Acoust. Soc. Am. 86(3), 1103–1117 (1989).
[CrossRef]

Hersey, S. P.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Hu, X. Y.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Hühnerbach, V.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Hwang, P. A.

P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000).
[CrossRef]

Izaguirre, M. A.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

James, R. H.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Johnson, B.

Johnson, B. D.

B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Jonsson, H. H.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Kastner, M.

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

Kattsov, V. M.

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

Keene, W. C.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Kieber, D. J.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Kohler, D.

Korotaev, G.

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Krekov, G. M.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Krekova, M. M.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Langley, D. S.

P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983).
[CrossRef]

Lanoisellé, M.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Lee, M.

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Leifer, I.

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

Lewis, M.

Li, W.

W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
[CrossRef] [PubMed]

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

Liu, X. Z.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Loewen, M. R.

M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994).
[CrossRef]

Long, M. S.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Maben, J. R.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

MacDonald, I. R.

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

Maring, H.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Marston, P. L.

W. P. Arnott and P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5(4), 496–506 (1988).
[CrossRef]

P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983).
[CrossRef]

McComiskey, A.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Melville, W. K.

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994).
[CrossRef]

Miller, S. D.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Minshull, T. A.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Monahan, E. C.

E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001).
[CrossRef]

Munk, W.

Nenes, A.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Nisbet, E. G.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Osborne, A. H.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Padró, L. T.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Pälike, H.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Park, J.

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

Pavlova, T. V.

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

Pawlak, G.

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

Piotrowski, A. M.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Pszenny, A. A. P.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Rao, J.

W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
[CrossRef] [PubMed]

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

Ren, D. M.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Rohling, E. J.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Sander, R.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Seinfeld, J. H.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Shamanaev, V. S.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Smoydzin, L.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Solomon, E. A.

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

Sorooshian, A.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Stephens, G. L.

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Stokes, M. D.

G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002).
[CrossRef] [PubMed]

Stramski, D.

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

Su, L. P.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Tan, D.

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

Teague, W. J.

P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000).
[CrossRef]

Terrill, E. J.

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

Thatcher, K. E.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Trevorrow, M. V.

M. V. Trevorrow, “Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance,” J. Acoust. Soc. Am. 114(5), 2672–2684 (2003).
[CrossRef] [PubMed]

Westbrook, G. K.

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Woolf, D. K.

D. K. Woolf, “Bubbles and the air-sea transfer velocity of gasses,” Atmos.-Ocean 31, 517–540 (1993).
[CrossRef]

Xia, M.

W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
[CrossRef] [PubMed]

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

Yang, K.

W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009).
[CrossRef] [PubMed]

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

Zhang, W.

Zhang, X.

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37(27), 6525–6536 (1998).
[CrossRef]

Zhang, X. D.

X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004).
[CrossRef] [PubMed]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Zhao, W. J.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Zhou, X. L.

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

Appl. Opt. (2)

Atmos.-Ocean (1)

D. K. Woolf, “Bubbles and the air-sea transfer velocity of gasses,” Atmos.-Ocean 31, 517–540 (1993).
[CrossRef]

Geophys. Res. Lett. (1)

G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:.
[CrossRef]

Global Biogeochem. Cycles (1)

A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:.
[CrossRef]

Izv., Atmos. Ocean. Phys. (1)

R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007).
[CrossRef]

J. Acoust. Soc. Am. (6)

M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994).
[CrossRef]

J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008).
[CrossRef] [PubMed]

M. V. Hall, “A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz,” J. Acoust. Soc. Am. 86(3), 1103–1117 (1989).
[CrossRef]

R. E. Glazman, “Effects of adsorbed films on gas bubble radial oscillations,” J. Acoust. Soc. Am. 74(3), 980–986 (1983).
[CrossRef]

P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983).
[CrossRef]

M. V. Trevorrow, “Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance,” J. Acoust. Soc. Am. 114(5), 2672–2684 (2003).
[CrossRef] [PubMed]

J. Atmos. Ocean. Technol. (2)

P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000).
[CrossRef]

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

J. Geophys. Res. (3)

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:.
[CrossRef]

E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006).
[CrossRef]

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Limnol. Oceanogr. (1)

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Nat. Geosci. (1)

E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009).
[CrossRef]

Nature (1)

G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Science (1)

B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Ratio of backscatter cross section σ to square of bubble radius a plotted vs. size parameter ka for bubbles with m = 0.75. (a) Comparison of Eq. (2) (black) with Mie calculation (red). (b) Comparison of Eq. (7) (black) with Eq. (2) with no averaging (grey) and averaging with filter widths of 10 (red) and 100 (blue) ka units.

Fig. 2
Fig. 2

Effective volume backscattering coefficient β(π) as a function of wind speed W for n = 1.33, R = 0.02, and τ = 10 ns. Curves are for incidence angles of 15° (black), 20° (red), and 25° (blue), pointed parallel (solid) and perpendicular (dashed) to the wind.

Tables (1)

Tables Icon

Table 1 Coefficient of backscatter/void fraction relationship

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A = E s E i r ,
A = 0.5 { r 1 ( 0 ) + m 2 m r 1 ( 0 ) [ 1 r 1 2 ( 0 ) ] exp ( 4 m k a i π i ) + p 3 sin ( θ p )     [ π sin ( θ p ) p tan ( υ p ) tan ( θ p ) k a ] 1 2 ( r 1 p 1 ( θ p )     [ 1 r 1 2 ( θ p ) ] + ( 1 ) p r 2 p 1 [ 1 r 2 2 ( θ p ) ] ) × exp ( 0.5 i [ p + 0.5 ] π + 2 i [ 1 cos ( θ p ) + m p cos ( υ p ) ] k a ) } a ,                    
2 θ p = 2 p υ p + ( 2 p ) π ,
sin ( θ p ) = m sin ( υ p ) .
r 1 ( θ ) = sin ( θ υ ) sin ( θ + υ ) r 2 ( θ ) = tan ( θ υ ) tan ( θ + υ )
σ = p | A p | 2
σ = ( 6.86 × 10 3 + 8.27 × 10 5 k a ) a 2 .
σ = 6.86 × 10 3 a 2 + 977 a 3 ,
β ( π ) = 0 N ( a ) σ ( a ) d a ,
β ( π ) = 233 0 N ( a ) V ( a ) d a = 233 F V ,
r 1 2 ( θ ) = [ sin ( θ υ ) sin ( θ + υ ) ] 2 + [ sin ( υ γ ) sin ( υ + γ ) ] 2 r 2 2 ( θ ) = [ tan ( θ υ ) tan ( θ + υ ) ] 2 + [ tan ( υ γ ) tan ( υ + γ ) ] 2
σ = ( 1.27 × 10 2 + 2.38 × 10 4 k a ) a 2     ( lipid) σ = ( 2.03 × 10 2 + 5.13 × 10 4 k a ) a 2     (protein)
β ( π ) = R n 2 c τ P x , y ( x i , y i ) ,

Metrics