Abstract

We demonstrate a new kind of optical spectrometer employing photonic crystal patterns to outcouple waveguided light from a transparent substrate. This spectrometer consists of an array of photonic crystal patterns, nanofabricated in a polymer on a glass substrate, combined with a camera. The camera captures an image of the light outcoupled from the patterned substrate; the array of patterns produces a spatially resolved map of intensities for different wavelength bands. The intensity map of the image is converted into a spectrum using the photonic crystal pattern response functions. We present a proof of concept by characterizing a white LED with our photonic crystal spectrometer.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Savage, "Spectrometers," Nature Photon. 3,601-602 (2009).
    [CrossRef]
  2. X-Rite, Incorporated. "MatchRight iVue Spectrophotometer Sell Sheet, " http://www.xrite.com/ documents/literature/en/L3-186_iVueSellSheet.pdf.
  3. Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
    [CrossRef]
  4. D. S. Goldman, P. L. White, and N. C. Anheier, "Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis," Appl. Opt. 29,4583-4589 (1990).
    [CrossRef] [PubMed]
  5. D. Sander, M.-O. Duecker, O. Blume, and J. Mueller, "Optical microspectrometer in SiON slab waveguides," in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE 2686, 100-107 (1996).
  6. B. Momeni, E. S. Hosseini, and A. Adibi, "Planar photonic crystal microspectrometers in silicon-nitride for the visible range," Opt. Express 17, 17060-17069 (2009), http://www.opticsinfobase.org/oe/ abstract.cfm?URI=oe-17-19-17060.
    [CrossRef] [PubMed]
  7. G. Schweiger, R. Nett, and T. Weigel, "Microresonator array for high-resolution spectroscopy," Opt. Lett. 32,2644-2646 (2007).
    [CrossRef] [PubMed]
  8. E. Yablonovitch, ‘ ‘Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58,2059-2062 (1987).
    [CrossRef] [PubMed]
  9. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second Edition (Princeton Univ. Press, Princeton, 2008).
  10. M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
    [CrossRef]
  11. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
    [CrossRef]
  12. J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
    [CrossRef]
  13. C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).
  14. D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st edition (Chapman & Hall/CRC, New York, 2003).
  15. See for example Sparkfun Electronics - Light/Imaging http://www.sparkfun.com/commerce/ categories.php?c=102.
  16. K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
    [CrossRef]

2009 (3)

N. Savage, "Spectrometers," Nature Photon. 3,601-602 (2009).
[CrossRef]

J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
[CrossRef]

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

2007 (1)

2006 (2)

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

2003 (1)

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

1999 (1)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

1990 (1)

1987 (1)

E. Yablonovitch, ‘ ‘Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

Anheier, N. C.

Asana, T.

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Benisty, H.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Bergenek, K.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

David, A.

J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
[CrossRef]

Fujita, M.

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Goldman, D. S.

Houdre, R.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Ishida, M.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

Ishihara, K.

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Krauss, T. F.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

Linder, N.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

Maruyama, Y.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

Matsubara, I.

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
[CrossRef]

Nett, R.

Noda, S.

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Oesterle, U.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Rattier, M.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Savage, N.

N. Savage, "Spectrometers," Nature Photon. 3,601-602 (2009).
[CrossRef]

Sawada, K.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

Schwarz, U. T.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

Schweiger, G.

Schwoob, E.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Smith, C. J. M.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

Takao, H.

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

Weigel, T.

Weisbuch, C.

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

White, P. L.

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
[CrossRef]

Wiesmann, C.

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

E. Yablonovitch, ‘ ‘Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre and U. Oesterle, "Omnidirectional and compact guided light extraction from Archimedean photonic lattices," Appl. Phys. Lett. 83,1283-1285 (2003).
[CrossRef]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75,1036-1038 (1999).
[CrossRef]

IEEE Trans. Electron Dev. (1)

Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, "A novel filterless fluorescence detection sensor for DNA analysis," IEEE Trans. Electron Dev. 53,553-558 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ishihara, M. Fujita, I. Matsubara, T. Asana, and S. Noda, "Direct fabrication of photonic crystal on glass substrate by nanoimprint lithography," Jpn. J. Appl. Phys. 45,L210-L212 (2006).
[CrossRef]

Laser Photon. Rev. (1)

C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, "Photonic crystal LEDs - designing light extraction," Laser Photon. Rev. 3,262-286 (2009).

Nature Photon. (2)

N. Savage, "Spectrometers," Nature Photon. 3,601-602 (2009).
[CrossRef]

J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3,163-169 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, ‘ ‘Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58,2059-2062 (1987).
[CrossRef] [PubMed]

Other (6)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second Edition (Princeton Univ. Press, Princeton, 2008).

X-Rite, Incorporated. "MatchRight iVue Spectrophotometer Sell Sheet, " http://www.xrite.com/ documents/literature/en/L3-186_iVueSellSheet.pdf.

D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st edition (Chapman & Hall/CRC, New York, 2003).

See for example Sparkfun Electronics - Light/Imaging http://www.sparkfun.com/commerce/ categories.php?c=102.

D. Sander, M.-O. Duecker, O. Blume, and J. Mueller, "Optical microspectrometer in SiON slab waveguides," in Integrated Optics and Microstructures III, M. Tabib-Azar, ed., Proc. SPIE 2686, 100-107 (1996).

B. Momeni, E. S. Hosseini, and A. Adibi, "Planar photonic crystal microspectrometers in silicon-nitride for the visible range," Opt. Express 17, 17060-17069 (2009), http://www.opticsinfobase.org/oe/ abstract.cfm?URI=oe-17-19-17060.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of spatially resolved, wavelength-selective outcoupling of waveguided light using and array of photonic crystals. Light waveguided into the edge of the substrate is outcoupled by photonic crystal patterns corresponding to different bands of wavelengths.

Fig. 2.
Fig. 2.

Scattering of three guided modes with |k| = √kx2 + ky2 = k1 (solid blue), k2 (solid green), and k3 (solid red) by a reciprocal lattice vector G into |k1 + G| (dashed blue), |k2 + G| (dashed green), and |k3 + G| (dashed red). Modes scattered (i) outside of the dashed gray circle (|k| > nk0) are evanescent in the slab, (ii) into the annulus bounded by the dashed gray and solid gray circles (nk0 > |k| > k0) are guided in the slab and evanescent in air, (iii) into the annulus bounded by the solid gray and black circles (k0 > |k| > NAk0) propagate in air but cannot be imaged by the camera, and (iv) inside the solid black circle (|k| < NAk0) propagate in the air and can be imaged by the camera.

Fig. 3.
Fig. 3.

Response of a 3×3 array of photonic crystal patterns to different inputs. (a) 470nm waveguided light is primarily outcoupled by two array elements in the bottom row, (b) 530nm waveguided light is primarily outcoupled by two array elements in the middle row and one in the bottom row, (c) 630nm waveguided light is primarily outcoupled by two array elements in the top row, and (d) a white light emitting diode (LED) spectrum is outcoupled by array elements in all rows. Each photonic crystal array element measures approximately 30μm × 30μm; the total array size is approximately 100μm × 100μm .

Fig. 4.
Fig. 4.

Spectral response of photonic crystal patterns. Spectral response of the 3×3 array of photonic crystal patterns pictured in Fig. 3 measured as mean neutral-weight grayscale intensity vs. wavelength. Peak wavelengths are determined by the photonic crystal lattice constants.

Fig. 5.
Fig. 5.

Comparison of photonic crystal spectrometer and commercial spectrometer. Comparison of white LED spectrum measurement using commercially available spectrometer, calculated spectrum projected on to the pattern spectral response function basis shown in Fig. 4, and measurement using the photonic crystal spectrometer.

Fig. 6.
Fig. 6.

Effect of number of basis elements on photonic crystal spectrometer response. Calculated projections of ideal white LED spectrum on to different bases, with 2 nm wavelength step size. (a) ideal white LED spectrum (no projection), (b) 11 response function basis similar to pattern responses in Fig. 4, (c) projection of white LED spectrum on to 11 function basis in (b), (d) 30 response function basis, (e) projection of white LED spectrum on to 30 function basis in (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ax = b
P = A right 1 A .
x ˜ = A right 1 b .

Metrics