Abstract

We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, Hoboken, NJ, USA, 2008).
  2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, Holographic Data Storage (Springer, New York, NY, USA, 2003).
  3. B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22(19), 1506–1508 (1997).
    [CrossRef]
  4. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [CrossRef]
  5. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
    [CrossRef] [PubMed]
  6. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
    [CrossRef] [PubMed]
  7. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  10. C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
    [CrossRef]
  11. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32(13), 1941–1943 (2007).
    [CrossRef] [PubMed]
  12. K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
    [CrossRef] [PubMed]
  13. A. J. Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosci. Rem. Sens. 22(1), 3–13 (1984).
    [CrossRef]
  14. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive Holography,” Opt. Express 17(15), 13040–13049 (2009).
    [CrossRef] [PubMed]
  15. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
    [CrossRef]
  16. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
    [CrossRef] [PubMed]
  17. Y. R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, USA, 1984).
  18. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1999).
  19. J. Van Roey, J. Vanderdonk, and P. E. Lagasse, “Beam-Propagation Method - Analysis and Assessment,” J. Opt. Soc. Am. 71(7), 803–810 (1981).
    [CrossRef]
  20. E. Nichelatti and G. Pozzi, “Improved beam propagation method equations,” Appl. Opt. 37(1), 9–21 (1998).
    [CrossRef]

2010 (1)

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[CrossRef] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

2007 (3)

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[CrossRef]

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[CrossRef] [PubMed]

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32(13), 1941–1943 (2007).
[CrossRef] [PubMed]

2004 (2)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1998 (1)

1997 (1)

1984 (1)

A. J. Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosci. Rem. Sens. 22(1), 3–13 (1984).
[CrossRef]

1982 (1)

1981 (1)

Bernet, S.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[CrossRef] [PubMed]

Brady, D. J.

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

Candès, E.

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[CrossRef]

Centurion, M.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Choi, K.

Cohn, K.

Devaney, A. J.

A. J. Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosci. Rem. Sens. 22(1), 3–13 (1984).
[CrossRef]

Duncan, M. D.

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[CrossRef] [PubMed]

Grange, R.

Heinrich, C.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Horisaki, R.

Hsieh, C. L.

Indebetouw, G.

Lagasse, P. E.

Li, H.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

Lim, S.

Liu, Z.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

Manuccia, T. J.

Marks, D. L.

Nichelatti, E.

Palanker, D.

Poon, T. C.

Pozzi, G.

Psaltis, D.

Pu, Y.

Reintjes, J.

Ritsch-Marte, M.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Romberg, J.

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[CrossRef]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

Schilling, B. W.

Shi, K.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

Shinoda, K.

Simanovskii, D.

Smith, T.

Storrie, B.

Suzuki, Y.

Toytman, I.

Van Roey, J.

Vanderdonk, J.

Wu, M. H.

Xie, X. S.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xu, Q.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

A. J. Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosci. Rem. Sens. 22(1), 3–13 (1984).
[CrossRef]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[CrossRef] [PubMed]

Inverse Probl. (1)

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Other (4)

S. A. Benton, and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, Hoboken, NJ, USA, 2008).

H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, Holographic Data Storage (Springer, New York, NY, USA, 2003).

Y. R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, USA, 1984).

M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the in-line holographic CARS imaging setup. L1: lens, focal length 750 mm, L2: lens, focal length 150 mm, L3: long working distance objective lens, focal length 10 mm, L4: lens, focal length 500 mm. As shown in the inset, sample includes a layer of nonlinear medium (index oil) to generate a reference wave and a specimen to be imaged.

Fig. 2
Fig. 2

Chemical selective in-line holographic CARS imaging. (a) an optical microscope image of a PMMA and a polystyrene (PS) spheres; (b) a hologram recorded at PMMA resonance; (c) reconstruction by digital back-propagation showing a resonant PMMA microsphere; (d) hologram recorded at polystyrene (PS) resonance; (e) reconstruction by digital back-propagation showing a resonant PS microsphere; (f) a hologram recorded without the use of a nonlinear layer.

Fig. 3
Fig. 3

In-line holographic CARS imaging of multiple PMMA microspheres suspended in water. (a) recorded inline hologram; (b)-(d) digital back-propagation results at different planes; (e)-(g) compressive holographic reconstruction; from (b) to (d) and (e) to (g), z= −33 μm, −61 μm, −82 μm, respectively.

Fig. 4
Fig. 4

Theoretical simulations. (a) calculated inline CARS hologram when sphere A is on resonance; (b) calculated Gabor hologram when only scattering effect is considered; (c) digital reconstruction of the inline CARS hologram shown in (a); (d) digital reconstruction of the Gabor hologram shown in (b);

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ^ = arg min f 1 2 g 2 Re ( H f ) 2 + τ f 1 ,
f 1 = z x y | f x , y , z | .
[ 2 + ω a s 2 c 2 n ( ω a s , x , y , z ) 2 ] E a s = 4 π ω a s 2 c 2 χ ( 3 ) E p 2 E s *
[ 2 + ω p 2 c 2 n ( ω p , x , y , z ) 2 ] E p = 0
[ 2 + ω s 2 c 2 n ( ω s , x , y , z ) 2 ] E s = 0
( 2 + ω a s 2 c 2 n ¯ 2 ) E a s = 4 π ω a s 2 c 2 χ ( 3 ) E p 2 E s * ω a s 2 c 2 2 n ¯ Δ n E a s
( 2 + ω a s 2 c 2 n ¯ 2 ) E s c = ω a s 2 c 2 2 n ¯ Δ n E r

Metrics