Abstract

A novel spectrum differential integration (SDI) method has been proposed and verified in an in-line fiber Mach-Zehnder (MZ) refractive index (RI) sensor using salt solutions. In SDI method, the difference between two interference spectra is determined by pointwise subtraction at each wavelength, followed by integration of the absolute differences along the scan range. Compared with the widely used peak wavelength shift method, the SDI method is more reliable over a wide wavelength range (on the order of 400 nm) and results in higher sensitivity as well as reduced device-dependence. The SDI method can also be utilized with other kinds of modal interferometric sensors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  2. Z. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]
  3. J. Villatoro and D. M. Hernández, “Low-cost optical fiber refractive index sensor based on core diameter mismatch,” J. Lightwave Technol. 24(3), 1409–1413 (2006).
    [CrossRef]
  4. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
    [CrossRef]
  5. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
    [CrossRef]
  6. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  7. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
    [CrossRef] [PubMed]
  8. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009).
    [CrossRef]
  9. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho1, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain,” Opt. Express 17(21), 18669–18675 (2009).
    [CrossRef]
  10. J. Ju, L. Ma, W. Jin, and Y. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors,” Opt. Lett. 34(12), 1861–1863 (2009).
    [CrossRef] [PubMed]
  11. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  12. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [CrossRef] [PubMed]
  13. M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17(20), 17976–17982 (2009).
    [CrossRef] [PubMed]
  14. Z. Tian and S. S. Yam, “In-Line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [CrossRef]
  15. D. R. Lide, “Concentrative Properties of Aqueous Solutions,” in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008) (CRC Press/Taylorand Francis, Boca Raton, FL., 2007), pp. 2640–2640.

2009

2008

2007

2006

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Badenes, G.

Caldas, P.

Carvalho, J. P.

Choi, H. Y.

Chung, Y.

Fabris, J. L.

Falate, R.

Farahi, F.

Ferreira, L. A.

Frazão, O.

Gu, B.

He, S.

Hernández, D. M.

Hu, Y.

Hwang, D.

Jha, R.

Jiang, M.

Jin, W.

Ju, J.

Kim, M. J.

Knight, J. C.

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Latifi, H.

Lee, B. H.

Loock, H. P.

Loock, H.-P.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Ma, L.

Minkovich, V. P.

Moon, D. S.

Moon, S.

Nguyen, L. V.

Pruneri, V.

Qian, J. W.

Santos, J. L.

Tam, H. Y.

Tian, Z.

Villatoro, J.

Wang, Y. C.

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Xiao, H.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Yam, S. S.

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Yin, M. J.

Zhang, A. P.

IEEE Photon. Technol. Lett.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

D. R. Lide, “Concentrative Properties of Aqueous Solutions,” in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008) (CRC Press/Taylorand Francis, Boca Raton, FL., 2007), pp. 2640–2640.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the basic principle of SDI.

Fig. 2
Fig. 2

(a) Transmission spectra (0.1 nm resolution, 4000 points) of in-line fiber taper MZI under different salt solutions from 0% to 20%. (b) Peak wavelength shifts of peak a and c read from spectra. (c) Integrations of the absolute spectrum differentials.

Fig. 3
Fig. 3

(a) Transmission spectra with smaller RI incremental. (b) SDI results with the scan range of 100 nm and the RBW of 0.06 nm.

Fig. 4
Fig. 4

(a) A larger scan range leads to improved sensitivities. (b) Smaller OSA resolution bandwidth with higher sensitivities. (c) Higher average peak contrast with higher sensitivities.

Fig. 5
Fig. 5

Shape profiles of tapers for the three devices.

Fig. 6
Fig. 6

Part of the transmission spectra of three devices (a-c) and their corresponding peak wavelength shifts (d-f).

Fig. 7
Fig. 7

Normalized device sensitivities under different scan ranges.

Tables (1)

Tables Icon

Table 1 Sensitivities of the six peaks in transmission spectra by linear fitting the wavelength shifts at different concentrations.

Metrics