Abstract

A novel ultrashort-pulse laser cavity configuration that incorporates an intracavity deformable mirror as a phase control element is reported. A user-defined spectral phase relation of 0.7 radians relative shift could be produced at around 1035 nm. Phase shaping as well as pulse duration optimization was achieved via a computer-controlled feedback loop.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. B 1(10), 1003–1006 (1984).
    [CrossRef]
  2. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  3. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
    [CrossRef]
  4. P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
    [CrossRef]
  5. J. Garduno-Mejıa, A. H. Greenaway, and D. T. Reid, “Programmable spectral phase control of femtosecond pulses by use of adaptive optics and real-time pulse measurement,” J. Opt. Soc. Am. B 21, 833–843 (2004).
    [CrossRef]
  6. A. Baltuška and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75(4-5), 427–443 (2002).
    [CrossRef]
  7. T. Binhammer, E. Rittweger, U. Morgner, R. Ell, and F. X. Kärtner, “Spectral phase control and temporal superresolution toward the single-cycle pulse,” Opt. Lett. 31(10), 1552–1554 (2006).
    [CrossRef] [PubMed]
  8. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulse by use of an acousto-optic programmable device,” Opt. Lett. 25, 575–577 (2000).
    [CrossRef]
  9. P. Wnuk, C. Radzewicz, and J. S. Krasiński, “Bimorph piezo deformable mirror for femtosecond pulse shaping,” Opt. Express 13(11), 4154–4159 (2005).
    [CrossRef] [PubMed]
  10. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
    [CrossRef] [PubMed]
  11. A. Sharan and D. Goswami, “Prospect of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).
  12. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
    [CrossRef] [PubMed]
  13. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
    [CrossRef]
  14. H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
    [CrossRef] [PubMed]
  15. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37(21), 4663–4668 (1998).
    [CrossRef]
  16. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35(15), 2554–2561 (1996).
    [CrossRef] [PubMed]
  17. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
    [CrossRef] [PubMed]
  18. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
    [PubMed]
  19. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [CrossRef] [PubMed]
  20. P. Welp, H. -. Heuck, and U. Wittrock, “Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CC_12.
  21. P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
    [CrossRef]
  22. A. A. Lagatsky, E. U. Rafailov, A. R. Sarmani, C. T. A. Brown, W. Sibbett, L. Ming, and P. G. R. Smith, “Efficient femtosecond green-light source with a diode-pumped mode-locked Yb3+:KY(WO4)2 laser,” Opt. Lett. 30(10), 1144–1146 (2005).
    [CrossRef] [PubMed]
  23. BAE systems Advanced Technology Centre, West Hanningfield rd, Great Baddow, Chelmsford CM2 8HN, UK.
  24. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. (Berl.) 73, 653–662 (2001).
  25. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
    [CrossRef]
  26. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29(9), 1025–1027 (2004).
    [CrossRef] [PubMed]
  27. P. O’Shea, S. Akturk, M. Kimmel, and R. Trebino, “Practical issues in ultra-short-pulse measurements with ‘GRENOUILLE’,” Appl. Phys. B 79(6), 683–691 (2004).
    [CrossRef]
  28. L. L. C. Swamp Optics, http://www.swampoptics.com/ .
  29. Private communication, Dr. Dongjoo Lee, Research Scientist Swamp Optics LLC.
  30. L. L. C. Mesa Photonics, http://www.mesaphotonics.com/ .
  31. C. R. Houck, J. A. Joines, and M. G. Kay, “A Genetic Algorithm for Function Optimization: A Matlab Implementation,” http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/
  32. L. Davis, Genetic Algorithms and Simulated Annealing, (Pitman Publishing 1987)
  33. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11(5), 491–501 (2003).
    [CrossRef] [PubMed]
  34. A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun. 165(1-3), 71–75 (1999).
    [CrossRef]
  35. C. Radzewicz, P. Wasylczyk, W. Wasilewski, and J. S. Krasiński, “Piezo-driven deformable mirror for femtosecond pulse shaping,” Opt. Lett. 29(2), 177–179 (2004).
    [CrossRef] [PubMed]
  36. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993).
    [CrossRef] [PubMed]
  37. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 microm from an optical parametric amplifier,” Opt. Lett. 33(7), 741–743 (2008).
    [CrossRef] [PubMed]
  38. J. Garduño-Mejía, A. H. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11(17), 2030–2040 (2003).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (1)

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (4)

2003 (2)

2002 (4)

A. Baltuška and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75(4-5), 427–443 (2002).
[CrossRef]

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

A. Sharan and D. Goswami, “Prospect of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
[PubMed]

2001 (2)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. (Berl.) 73, 653–662 (2001).

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

2000 (3)

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulse by use of an acousto-optic programmable device,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

1999 (2)

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun. 165(1-3), 71–75 (1999).
[CrossRef]

1998 (2)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[CrossRef]

J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37(21), 4663–4668 (1998).
[CrossRef]

1996 (1)

1993 (2)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
[CrossRef] [PubMed]

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993).
[CrossRef] [PubMed]

1984 (2)

P. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. B 1(10), 1003–1006 (1984).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[CrossRef] [PubMed]

Akturk, S.

Ao, M.-W.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

Baltuška, A.

A. Baltuška and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75(4-5), 427–443 (2002).
[CrossRef]

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

Baum, P.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

Bente, E.

Binhammer, T.

Bonora, S.

Brida, D.

Brown, C. T. A.

Burns, D.

Cerullo, G.

Cheng, Z.

Cherezova, T. Y.

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

Chu, K. C.

Cirmi, G.

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
[CrossRef] [PubMed]

Dainty, J. C.

De Silvestri, S.

Dienes, A.

Ell, R.

Fork, R. L.

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[CrossRef] [PubMed]

P. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. B 1(10), 1003–1006 (1984).
[CrossRef]

Gallmann, L.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

Garduno-Mejia, J.

Garduño-Mejía, J.

Girkin, J.

Gordon, J. P.

P. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. B 1(10), 1003–1006 (1984).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[CrossRef] [PubMed]

Goswami, D.

A. Sharan and D. Goswami, “Prospect of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).

Greenaway, A. H.

Griffith, M.

Gu, X.

Heritage, J. P.

Hu, S.-J.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Jiang, W.-H.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Kapteyn, H.

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

Kaptsov, L. N.

Kärtner, F. X.

Keller, U.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. (Berl.) 73, 653–662 (2001).

Kimmel, M.

Kobayashi, T.

A. Baltuška and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75(4-5), 427–443 (2002).
[CrossRef]

Kompa, K.

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Koryabin, A. V.

Krasinski, J. S.

Kudryashov, A. V.

Kuleshov, N. V.

A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun. 165(1-3), 71–75 (1999).
[CrossRef]

Kwong, K. F.

Lagatsky, A. A.

Laude, V.

Laycock, L.

Liu, Y.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Lochbrunner, S.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

Lubeigt, W.

Maginnis, K.

Manzoni, C.

Martinez, O. E.

Martinez, P. O. E.

P. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. B 1(10), 1003–1006 (1984).
[CrossRef]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[CrossRef]

Mikhailov, V. P.

A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun. 165(1-3), 71–75 (1999).
[CrossRef]

Ming, L.

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

Morgner, U.

Motzkus, M.

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Mourou, G.

Murnane, M.

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

O’Shea, P.

Paschotta, R.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. (Berl.) 73, 653–662 (2001).

Rabitz, H.

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
[CrossRef] [PubMed]

Radzewicz, C.

Rafailov, E. U.

Reid, D. T.

Riedle, E.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

Rittweger, E.

Russek, U.

Sarmani, A. R.

Sharan, A.

A. Sharan and D. Goswami, “Prospect of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).

Sibbett, W.

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[CrossRef]

Smith, P. G. R.

Spielmann, C.

Steinmeyer, G.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

Tournois, P.

Trebino, R.

Valentine, G.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

Verluise, F.

Villoresi, P.

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
[CrossRef] [PubMed]

Wasilewski, W.

Wasylczyk, P.

Wnuk, P.

Xu, B.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Yang, P.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Yang, W.

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

Yankelevich, D.

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. (Berl.) 73, 653–662 (2001).

Appl. Phys. B (3)

P. O’Shea, S. Akturk, M. Kimmel, and R. Trebino, “Practical issues in ultra-short-pulse measurements with ‘GRENOUILLE’,” Appl. Phys. B 79(6), 683–691 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with flexible compressor,” Appl. Phys. B 74(9), s219– s 224 (2002).
[CrossRef]

A. Baltuška and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75(4-5), 427–443 (2002).
[CrossRef]

Curr. Sci. (1)

A. Sharan and D. Goswami, “Prospect of ultrafast pulse shaping,” Curr. Sci. 82, 30–37 (2002).

J. Opt. Soc. Am. B (2)

Nature (2)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406(6792), 164–166 (2000).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[CrossRef]

Opt. Commun. (2)

P. Yang, Y. Liu, W. Yang, M.-W. Ao, S.-J. Hu, B. Xu, and W.-H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[CrossRef]

A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun. 165(1-3), 71–75 (1999).
[CrossRef]

Opt. Express (6)

Opt. Lett. (10)

T. Binhammer, E. Rittweger, U. Morgner, R. Ell, and F. X. Kärtner, “Spectral phase control and temporal superresolution toward the single-cycle pulse,” Opt. Lett. 31(10), 1552–1554 (2006).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulse by use of an acousto-optic programmable device,” Opt. Lett. 25, 575–577 (2000).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[CrossRef] [PubMed]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

C. Radzewicz, P. Wasylczyk, W. Wasilewski, and J. S. Krasiński, “Piezo-driven deformable mirror for femtosecond pulse shaping,” Opt. Lett. 29(2), 177–179 (2004).
[CrossRef] [PubMed]

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993).
[CrossRef] [PubMed]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 microm from an optical parametric amplifier,” Opt. Lett. 33(7), 741–743 (2008).
[CrossRef] [PubMed]

A. A. Lagatsky, E. U. Rafailov, A. R. Sarmani, C. T. A. Brown, W. Sibbett, L. Ming, and P. G. R. Smith, “Efficient femtosecond green-light source with a diode-pumped mode-locked Yb3+:KY(WO4)2 laser,” Opt. Lett. 30(10), 1144–1146 (2005).
[CrossRef] [PubMed]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29(9), 1025–1027 (2004).
[CrossRef] [PubMed]

Science (2)

H. Rabitz, M. Motzkus, K. Kompa, K. Kompa, and R. de Vivie-Riedle “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream Is Alive,” Science 259(5101), 1581–1589 (1993).
[CrossRef] [PubMed]

Other (7)

P. Welp, H. -. Heuck, and U. Wittrock, “Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CC_12.

BAE systems Advanced Technology Centre, West Hanningfield rd, Great Baddow, Chelmsford CM2 8HN, UK.

L. L. C. Swamp Optics, http://www.swampoptics.com/ .

Private communication, Dr. Dongjoo Lee, Research Scientist Swamp Optics LLC.

L. L. C. Mesa Photonics, http://www.mesaphotonics.com/ .

C. R. Houck, J. A. Joines, and M. G. Kay, “A Genetic Algorithm for Function Optimization: A Matlab Implementation,” http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/

L. Davis, Genetic Algorithms and Simulated Annealing, (Pitman Publishing 1987)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

a) Laser cavity design and feedback loop. b) Bimorph mirror front surface. The mirror with 37 actuator elements has an active aperture of 7 mm, of which 3.2 mm were occupied by the cavity mode (marked in green).

Fig. 2
Fig. 2

Simulated mode of the laser cavity with the position of the individual components as indicated. This shows that the bimorph mirror is placed at one of the Fourier planes of the cavity and that the SESAM location is not at a focal point of the cavity.

Fig. 6
Fig. 6

Positive quadratic phase optimization: The top row shows the initial spectrum (Δλ = 5.1 nm), initial spectral phase (blue dots) which is nearly flat and the target quadratic phase (black dots with line), as well as the measured GRENOUILLE trace. After initiating the GOA (bottom row) the spectral width remained constant at Δλ = 5.3 nm while the spectral phase has changed its initially flat outline and started to converge towards the positive quadratic profile designed by the user and showing a maximum phase shift of over + 0.4 rad. Importantly, the measured GRENOUILLE trace remains undistorted.

Fig. 7
Fig. 7

Negative quadratic phase optimization: The top row shows the initial spectrum (Δλ = 5.2 nm), initial spectral phase (blue dots) and the target negative quadratic phase (black dots with line), as well as the measured GRENOUILLE trace. After initiating the GOA (bottom row) the spectral width was measured to be Δλ = 5.4 nm and the spectral phase starts to converge towards the negative quadratic profile designed by the user with a maximum phase shift of over −0.3 rad. Again the measured trace shows no indication of distortion.

Fig. 3
Fig. 3

a) Laser mode for a plane deformable mirror surface. b) Laser mode for a concave (r = 35 m) mirror surface.

Fig. 4
Fig. 4

Pulse duration optimization: Top row (from left to right) pulse parameters before optimization: initial spectrum, spectral phase, retrieved GRENOUILLE trace and initial temporal intensity. At the beginning of the optimization procedure the spectral width is 3.9 nm and the spectral phase fluctuates by > 0.16 rad, the pulses at this initial stage had durations of 278 fs. Bottom row, pulse parameters after optimization by the GOA (left to right): the spectral width has increased to 6.2 nm but importantly the spectral phase variations have decreased to < 0.04 rad. The retrieved GRENOUILLE and temporal intensity trace indicates that the pulse durations have shortened to 204 fs.

Fig. 5
Fig. 5

Flat phase optimization: The top row shows the initial spectrum, initial spectral phase (blue dots) and target phase (black dots with line) with the measured GRENOUILLE trace. The initial spectrum has a width of Δλ = 5.1 nm with a flat phase. After initiating the GOA (bottom row) the spectral width (bottom left) has increased to Δλ = 6.1 nm, while the spectral phase has maintained its flat shape and started to extend (as the spectral width has increased). Importantly, the GOA was able to further optimize the laser and shorten the pulses from 251 fs to 210 fs, while maintaining a flat phase profile as defined by the user.

Fig. 9
Fig. 9

Cubic phase design: The top row shows the initial spectrum, initial spectral phase (blue dots) and the target cubic phase (black dots with line), as well as the measured trace. Middle row: this is the intermediate step that shows the optimization algorithm while still working where at the longer wavelength the spectral phase has already been adjusted but it has not been yet achieved for the shorter wavelengths in the pulse spectrum. After the GOA is stopped (bottom row) the spectral phase converged towards the cubic profile designed by the user. The spectral width remained constant at 5.3 nm, while the pulse duration increased from 225 fs to 235 fs. Again for all three instances, there are no distortions and/or shifts in the measured traces.

Fig. 8
Fig. 8

a) Applied bias voltage of the 37 actuators. The red line corresponds to the phase shape shown in Fig. 7 and is averaged as a constant bias of −5.7 V over all actuators. The blue line corresponds to the phase shape shown in Fig. 6 and is averaged as a constant bias of −15.1 V over all actuators. The horizontal black line indicates a constant bias voltage of −9.4 V for a flat mirror surface. b) This shows the mirror response in dioptre to a constant bias voltage applied to all 37 actuators. The vertical black line donates a flat mirror surface at a bias of −9.4 V where lower bias voltages cause a concave mirror shape and higher voltages cause a convex mirror shape.

Tables (1)

Tables Icon

Table 1 Mirror radius of curvature (r) and the associated waist radii (ω at the 1/e2 level) at the crystal and the SESAM.

Metrics