Abstract

Detection of glucose in water solution for several different concentrations has been performed with the purpose to determine the sensitivity of Near Infrared Bloch Surface Waves (λ = 1.55μm) upon refractive index variations of the outer medium. TE-polarized electromagnetic surface waves are excited by a prism on a silicon nitride multilayer, according to the Kretschmann configuration. The real-time reflectance changes induced by discrete variations in glucose concentration has been revealed and analyzed. Without using any particular averaging strategy during the measurements, we pushed the device detection limit down to a glucose concentration of 2.5mg/dL, corresponding to a minimum detectable refractive index variation of the water solution as low as 3.8·10−6.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [CrossRef]
  2. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [CrossRef]
  3. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
    [CrossRef]
  4. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
    [CrossRef]
  5. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
    [CrossRef] [PubMed]
  6. M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
    [CrossRef]
  7. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
    [CrossRef]
  8. D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
    [CrossRef] [PubMed]
  9. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
    [CrossRef] [PubMed]
  10. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
    [CrossRef]
  11. G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay,” Opt. Lett. 34(7), 1048–1050 (2009).
    [CrossRef] [PubMed]
  12. F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
    [CrossRef]
  13. S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
    [CrossRef]
  14. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
    [CrossRef] [PubMed]
  15. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
    [CrossRef]
  16. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
    [CrossRef]
  17. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
    [CrossRef] [PubMed]
  18. CRC Handbook of Chemistry and Physics, 70th ed., R. C. Weast, ed. (CRC, 1989).
  19. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  20. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
    [CrossRef] [PubMed]
  21. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  22. C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
    [CrossRef]
  23. M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
    [CrossRef]

2010 (2)

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

2009 (5)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay,” Opt. Lett. 34(7), 1048–1050 (2009).
[CrossRef] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

2006 (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

2005 (2)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

2002 (1)

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

2000 (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

1999 (2)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998 (1)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

1996 (1)

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[CrossRef]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Ballarini, V.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

Bañuls, M.-J.

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

Barrios, C. A.

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

Bianco, S.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Braun, P. V.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Bussolino, F.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Canavese, G.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Castagna, R.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[CrossRef]

Coté, G. L.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

Demichelis, F.

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
[CrossRef]

Descrovi, E.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[CrossRef] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Di Finizio, S.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

Digregorio, G.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Dominici, L.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[CrossRef] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Fedyanin, A. A.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

Ferrante, I.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Fiorilli, S.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Frascella, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Galli, M.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Giorgis, F.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[CrossRef] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[CrossRef] [PubMed]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
[CrossRef]

Glucksberg, M. R.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Goh, C.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

González-Pedro, V.

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

Herzig, H.-P.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Kim, G. D.

Kim, K. D.

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Lee, H. S.

Lee, S. S.

Lee, Y. J.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Lettieri, S.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

Liscidini, M.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Loo, R.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Lyandres, O.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Maddalena, P.

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

Maquieira, A.

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

Marasso, S. L.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

Michelotti, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[CrossRef] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Nakagawa, W.

Napione, L.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

Patrini, M.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Pavesi, L.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

Piliarik, M.

Pirri, C. F.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
[CrossRef]

Pruzinsky, S. A.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Puchades, R.

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

Quaglio, M.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Ricciardi, C.

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Sfez, T.

Shah, N. C.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Sipe, J. E.

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

Soboleva, I. V.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

Son, G. S.

Stuart, D. A.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Summonte, C.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

Van Duyne, R. P.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Vinegoni, C.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

Walsh, J. T.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[CrossRef]

Yonzon, C. R.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Zhang, X.

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005).
[CrossRef] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009).
[CrossRef]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009).
[CrossRef]

S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002).
[CrossRef]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Biosens. Bioelectron. (2)

C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010).
[CrossRef]

M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010).
[CrossRef]

J. Biomed. Opt. (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

J. Lumin. (1)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

Langmuir (1)

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. B (1)

F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Sens. Actuators B Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Other (1)

CRC Handbook of Chemistry and Physics, 70th ed., R. C. Weast, ed. (CRC, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for BSW coupling in the Kretschmann configuration. The illumination beam has low divergence (~0.038 deg.) and a linear polarization parallel to the 1DPC interfaces (TE). A flow cell is contacted to the top surface of the 1DPC.

Fig. 2
Fig. 2

(a) Best-fit of the spectrally resolved reflectance profiles R(λ) at fixed angle θ0 showing the red-shift of the BSW resonance for increasing glucose concentrations. For the sake of clarity, the experimental points are shown only for the three largest concentrations. (b) Spectral shift Δλ of the BSW resonance as a function of the glucose concentration C and of the corresponding refractive index variation of the solution. The linear fit of the experimental data (solid, red on-line) and the calculated Δλ (dashed, blue on-line) are shown for comparison.

Fig. 3
Fig. 3

Measured reflectance variations ΔR(t) as a function of the glucose concentration C in water solution. Insets: temporal ΔR(t) traces recorded during sequential injection cycles water/glucose solution/water for the two concentrations corresponding to the indicated experimental points. The continuous line shows the best linear fit of the experimental data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ β = 2 π sin θ 0  n BK7 ( Δ λ λ o 2 n 0 + Δ n λ 0 n 0 2 )
Δ λ λ 0 = Δ n(C) n 0

Metrics