Abstract

We demonstrated the use of the analog self electro-optic effect device (SEED) as part of an artificial retina chip for the detection and estimation of local motion. The characterization was performed by comparing our chip to biological and computational models and to other artificial retina chips. Its main unique feature is the optical output, since most chips have electrical output. By combining the response of the chip with temporal information about the input image, it is possible to estimate the velocity perpendicular to an edge, including its direction.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
    [CrossRef] [PubMed]
  2. W. Reichardt, “Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems,” Z. Naturforsch. B 12b, 447 (1957).
  3. A. Borst and M. Egelhaff, “Principles of visual motion detection,” Trends in Neuro-Science 12(8), 297–306 (1989).
    [CrossRef]
  4. T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE Trans. Neural Netw. 4(3), 529–541 (1993).
    [CrossRef] [PubMed]
  5. T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” SPIE Infrared Sensors: Detectors, Electron, Signal Proc. 1541, 92 (1991).
  6. R. A. Deutschmann and C. Koch, “An analog VLSI velocity sensor using the gradient method,” Proc. IEEE International Symposium on Circuits and Systems 6, 649 (1998) (ISCAS).
  7. H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
    [CrossRef]
  8. A. Cassinelli, P. Chavel, and M. P. Y. Desmulliez, “Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor- self-electro-optic-device-based prototype,” Appl. Opt. 40(35), 6479–6491 (2001).
    [CrossRef]
  9. J. F. Aquino and E. A. De Souza, “Differential and direction-sensitive detector based on self-electro-optic effect in GaAs multiple quantum well,” Electron. Lett. 41(24), 1350 (2005).
    [CrossRef]
  10. E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
    [CrossRef]
  11. C. J. Vianna and E. A. De Souza, “Detecting Edges Using an Analog Electrooptic Device,” J. Microw. and Optoelectron. 5, 30 (2006).
  12. C. J. Vianna and E. A. De Souza, “An Electrooptic Multiple-Quantum-Well Device for Image Processing,” IEEE J. Quantum Electron. 45(6), 603–608 (2009).
    [CrossRef]
  13. F. Yazdani and E. A. De Souza, “Cross-differentiator image processor based on self-electro-optic effect device,” Electron. Lett. 43(14), 771 (2007).
    [CrossRef]
  14. F. Yazdani and E. A. De Souza, “Operating point optimization of self-linearized differential quantum well electroabsorptive modulator,” Microw. Opt. Technol. Lett. 52(1), 1–4 (2010).
    [CrossRef]
  15. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
    [CrossRef]
  16. E. A. De Souza, L. Carraresi, and D. A. B. Miller, “Linear image differentiation by use of analog differential self-electro-optic effect devices,” Opt. Lett. 19(22), 1882 (1994).
    [CrossRef] [PubMed]

2010

F. Yazdani and E. A. De Souza, “Operating point optimization of self-linearized differential quantum well electroabsorptive modulator,” Microw. Opt. Technol. Lett. 52(1), 1–4 (2010).
[CrossRef]

2009

C. J. Vianna and E. A. De Souza, “An Electrooptic Multiple-Quantum-Well Device for Image Processing,” IEEE J. Quantum Electron. 45(6), 603–608 (2009).
[CrossRef]

2007

F. Yazdani and E. A. De Souza, “Cross-differentiator image processor based on self-electro-optic effect device,” Electron. Lett. 43(14), 771 (2007).
[CrossRef]

2006

C. J. Vianna and E. A. De Souza, “Detecting Edges Using an Analog Electrooptic Device,” J. Microw. and Optoelectron. 5, 30 (2006).

2005

J. F. Aquino and E. A. De Souza, “Differential and direction-sensitive detector based on self-electro-optic effect in GaAs multiple quantum well,” Electron. Lett. 41(24), 1350 (2005).
[CrossRef]

2004

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

2001

1998

R. A. Deutschmann and C. Koch, “An analog VLSI velocity sensor using the gradient method,” Proc. IEEE International Symposium on Circuits and Systems 6, 649 (1998) (ISCAS).

1994

1993

T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE Trans. Neural Netw. 4(3), 529–541 (1993).
[CrossRef] [PubMed]

1991

T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” SPIE Infrared Sensors: Detectors, Electron, Signal Proc. 1541, 92 (1991).

1990

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

1989

A. Borst and M. Egelhaff, “Principles of visual motion detection,” Trends in Neuro-Science 12(8), 297–306 (1989).
[CrossRef]

1985

T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

1957

W. Reichardt, “Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems,” Z. Naturforsch. B 12b, 447 (1957).

Aquino, J. F.

J. F. Aquino and E. A. De Souza, “Differential and direction-sensitive detector based on self-electro-optic effect in GaAs multiple quantum well,” Electron. Lett. 41(24), 1350 (2005).
[CrossRef]

Borst, A.

A. Borst and M. Egelhaff, “Principles of visual motion detection,” Trends in Neuro-Science 12(8), 297–306 (1989).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Cada, M.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Carraresi, L.

Cassinelli, A.

Chavel, P.

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

De Souza, E. A.

F. Yazdani and E. A. De Souza, “Operating point optimization of self-linearized differential quantum well electroabsorptive modulator,” Microw. Opt. Technol. Lett. 52(1), 1–4 (2010).
[CrossRef]

C. J. Vianna and E. A. De Souza, “An Electrooptic Multiple-Quantum-Well Device for Image Processing,” IEEE J. Quantum Electron. 45(6), 603–608 (2009).
[CrossRef]

F. Yazdani and E. A. De Souza, “Cross-differentiator image processor based on self-electro-optic effect device,” Electron. Lett. 43(14), 771 (2007).
[CrossRef]

C. J. Vianna and E. A. De Souza, “Detecting Edges Using an Analog Electrooptic Device,” J. Microw. and Optoelectron. 5, 30 (2006).

J. F. Aquino and E. A. De Souza, “Differential and direction-sensitive detector based on self-electro-optic effect in GaAs multiple quantum well,” Electron. Lett. 41(24), 1350 (2005).
[CrossRef]

E. A. De Souza, L. Carraresi, and D. A. B. Miller, “Linear image differentiation by use of analog differential self-electro-optic effect devices,” Opt. Lett. 19(22), 1882 (1994).
[CrossRef] [PubMed]

Delbruck, T.

T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE Trans. Neural Netw. 4(3), 529–541 (1993).
[CrossRef] [PubMed]

T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” SPIE Infrared Sensors: Detectors, Electron, Signal Proc. 1541, 92 (1991).

Desmulliez, M. P. Y.

Deutschmann, R. A.

R. A. Deutschmann and C. Koch, “An analog VLSI velocity sensor using the gradient method,” Proc. IEEE International Symposium on Circuits and Systems 6, 649 (1998) (ISCAS).

Egelhaff, M.

A. Borst and M. Egelhaff, “Principles of visual motion detection,” Trends in Neuro-Science 12(8), 297–306 (1989).
[CrossRef]

Furukawa, Y.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Glinski, J. M.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Hill, K. O.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Keyworth, E. P.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Koch, C.

R. A. Deutschmann and C. Koch, “An analog VLSI velocity sensor using the gradient method,” Proc. IEEE International Symposium on Circuits and Systems 6, 649 (1998) (ISCAS).

T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
[CrossRef] [PubMed]

Mead, C. A.

T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” SPIE Infrared Sensors: Detectors, Electron, Signal Proc. 1541, 92 (1991).

Miller, D. A. B.

E. A. De Souza, L. Carraresi, and D. A. B. Miller, “Linear image differentiation by use of analog differential self-electro-optic effect devices,” Opt. Lett. 19(22), 1882 (1994).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Nishioy, K.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Ohtaniz, M.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Poggio, T.

T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
[CrossRef] [PubMed]

Reichardt, W.

W. Reichardt, “Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems,” Z. Naturforsch. B 12b, 447 (1957).

Rolland, C.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Springthorpe, A. J.

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

Torre, V.

T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
[CrossRef] [PubMed]

Vianna, C. J.

C. J. Vianna and E. A. De Souza, “An Electrooptic Multiple-Quantum-Well Device for Image Processing,” IEEE J. Quantum Electron. 45(6), 603–608 (2009).
[CrossRef]

C. J. Vianna and E. A. De Souza, “Detecting Edges Using an Analog Electrooptic Device,” J. Microw. and Optoelectron. 5, 30 (2006).

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

Yamada, H.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Yazdani, F.

F. Yazdani and E. A. De Souza, “Operating point optimization of self-linearized differential quantum well electroabsorptive modulator,” Microw. Opt. Technol. Lett. 52(1), 1–4 (2010).
[CrossRef]

F. Yazdani and E. A. De Souza, “Cross-differentiator image processor based on self-electro-optic effect device,” Electron. Lett. 43(14), 771 (2007).
[CrossRef]

Yonezux, H.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Appl. Opt.

Electron. Lett.

F. Yazdani and E. A. De Souza, “Cross-differentiator image processor based on self-electro-optic effect device,” Electron. Lett. 43(14), 771 (2007).
[CrossRef]

J. F. Aquino and E. A. De Souza, “Differential and direction-sensitive detector based on self-electro-optic effect in GaAs multiple quantum well,” Electron. Lett. 41(24), 1350 (2005).
[CrossRef]

E. P. Keyworth, M. Cada, J. M. Glinski, A. J. Springthorpe, C. Rolland, and K. O. Hill, “Multiple quantum well directional coupler as a self-electro-optic effect device,” Electron. Lett. 26(24), 2011–2013 (1990).
[CrossRef]

IEEE J. Quantum Electron.

C. J. Vianna and E. A. De Souza, “An Electrooptic Multiple-Quantum-Well Device for Image Processing,” IEEE J. Quantum Electron. 45(6), 603–608 (2009).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. 21(9), 1462–1476 (1985).
[CrossRef]

IEEE Trans. Neural Netw.

T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEEE Trans. Neural Netw. 4(3), 529–541 (1993).
[CrossRef] [PubMed]

J. Microw. and Optoelectron.

C. J. Vianna and E. A. De Souza, “Detecting Edges Using an Analog Electrooptic Device,” J. Microw. and Optoelectron. 5, 30 (2006).

Microw. Opt. Technol. Lett.

F. Yazdani and E. A. De Souza, “Operating point optimization of self-linearized differential quantum well electroabsorptive modulator,” Microw. Opt. Technol. Lett. 52(1), 1–4 (2010).
[CrossRef]

Nature

T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature 317(6035), 314–319 (1985).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Rev.

H. Yamada, K. Nishioy, M. Ohtaniz, H. Yonezux, and Y. Furukawa, “A network of analog metal oxide semiconductor circuits for motion detection with local adaptation to a background image,” Opt. Rev. 11(5), 320–327 (2004).
[CrossRef]

Proc. IEEE International Symposium on Circuits and Systems

R. A. Deutschmann and C. Koch, “An analog VLSI velocity sensor using the gradient method,” Proc. IEEE International Symposium on Circuits and Systems 6, 649 (1998) (ISCAS).

SPIE Infrared Sensors: Detectors, Electron, Signal Proc.

T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” SPIE Infrared Sensors: Detectors, Electron, Signal Proc. 1541, 92 (1991).

Trends in Neuro-Science

A. Borst and M. Egelhaff, “Principles of visual motion detection,” Trends in Neuro-Science 12(8), 297–306 (1989).
[CrossRef]

Z. Naturforsch. B

W. Reichardt, “Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems,” Z. Naturforsch. B 12b, 447 (1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus to estimate local derivative of a incident image at 780 nm. The set of polarizing beam splitter (PBS2) with 50:50 mirror and wave plates λ/41 and λ/42 allow the image beam (green line) and the reference beam (red line) illuminate simultaneously the SEED.

Fig. 2
Fig. 2

Picture of the self-linearized differential device used to estimate the local motion. In the detail: the same structure is used simultaneously as quantum-well modulators (A and B) and as conventional photodetectors (1 and 2). The photodetector and the modulator are the same structure illuminated by different wavelength and therefore having a different response to each one of them. For the image one ate 780 nm it operates as a conventional photodiode and for the reference beam at 850 nm it operates as a quantum well modulator.

Fig. 3
Fig. 3

Self-linearized differential circuit where a pair of quantum well works simultaneously as modulators (A and B) and conventional photodetectors (1 and 2). Pa1 and Pa2 are the input image. PinA and PinB are the input reference beams used to make the measurement. PoutA and PoutB are the modulated output beams of each SEED. Ic is the difference between the currents of the photodetectors; i1 and i2 are the photocurrent in the modulators B and A, respectively. The output of the whole circuit is the difference between the modulated beams (PoutB - PoutA) which is proportional to Ic.

Fig. 4
Fig. 4

Measurements of the difference between the two reference beams (PoutB - PoutA) when a single image is illuminating first the photodetector 1, and modulator B, (blue curve at the top) giving positive response and later the photodetector 2, and modulator A, (red curve at the bottom) giving negative responses, as expected, in all cases. The small variation between the two average values (red and blue lines) is due to the unequal power in the reference beams.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I x v x + I y v y + I t = 0
v x = I t / I x

Metrics