Abstract

Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4’-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
    [CrossRef]
  3. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  5. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
    [CrossRef]
  6. F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie 9, 421-441 (1888).
    [CrossRef]
  7. K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  8. Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [CrossRef]
  9. G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
    [CrossRef]
  10. M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
    [CrossRef]
  11. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097 (2005).
    [CrossRef] [PubMed]
  12. W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
    [CrossRef]
  13. I. C. Khoo and S. T. Wu, Optics and nonlinear Optics of Liquid Crystals, (World Scientific Publishing, Singapore, 1993).
  14. J. P. Kim, A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1xAs," Opt. Lett. 32, 536-538 (2007).
    [CrossRef] [PubMed]
  15. S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
    [CrossRef] [PubMed]
  16. A. Taflove, S.C. Hagness, Computational Electrodynamics 3rd ed., (Artech House Publishers, Boston, 2005).
  17. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997).
    [CrossRef]
  18. V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998).
    [CrossRef]
  19. J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004).
    [CrossRef]
  20. K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
    [CrossRef]

2009 (1)

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

2008 (1)

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

2007 (3)

J. P. Kim, A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1xAs," Opt. Lett. 32, 536-538 (2007).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

2005 (3)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

2003 (2)

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

1999 (1)

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

1998 (1)

V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998).
[CrossRef]

1997 (2)

W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
[CrossRef]

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997).
[CrossRef]

1888 (1)

F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie 9, 421-441 (1888).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Busch, K.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Chor, E. F.

W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Dündar, M. A.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Fauchet, P. M.

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Gösele, U.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hu, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Imamog¸lu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Jamois, C.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

John, S.

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Kamp, M.

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Karouta, F.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Kek, S. P.

W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kicken, H. H. J. E.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Kim, J. P.

Kitzerow, H.-S.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

Klopf, F.

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kosuge, M.

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kundu, S. K.

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

Lau, W. S.

W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
[CrossRef]

Li, J.

J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998).
[CrossRef]

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997).
[CrossRef]

Matthias, S.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

Mertens, G.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

N¨otzel, R.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Okudaira, S.

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

Ouyang, H.

Painter, O.

K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reinitzer, F.

F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie 9, 421-441 (1888).
[CrossRef]

Reithmaier, J. P

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Salemink, H. W. M.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Sarangan, A. M.

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Shekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shinyshiki, N.

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

Silov, A. Yu.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Srinivasan, K.

K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998).
[CrossRef]

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997).
[CrossRef]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

van der Heijden, R. W.

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Wehrspohn, R. B.

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

Weiss, S. M.

Wu, S.-T.

J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004).
[CrossRef]

Yagihara, S.

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhang, J.

Appl. Phys. Lett. (5)

K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005).
[CrossRef]

M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

J. Appl. Phys. (1)

J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004).
[CrossRef]

J. Chem. Phys. (3)

S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008).
[CrossRef] [PubMed]

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997).
[CrossRef]

V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997).
[CrossRef]

Monatshefte für Chemie (1)

F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie 9, 421-441 (1888).
[CrossRef]

Nature (3)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Other (2)

I. C. Khoo and S. T. Wu, Optics and nonlinear Optics of Liquid Crystals, (World Scientific Publishing, Singapore, 1993).

A. Taflove, S.C. Hagness, Computational Electrodynamics 3rd ed., (Artech House Publishers, Boston, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Upper part) Room temperature photoluminescence spectrum of the embedded (In,Ga)As quantum layer. The orbital shell structure of the quantum dot ensemble is clearly resolved. (Lower part) PL spectrum of a microdisk sample immersed in the liquid crystal 5CB. The sharp lines decorating the quantum dot emission originate from the fundamental whispering gallery modes in the microdisk. (Right panels) Spectra from two different devices with high quality factors. The maximum achievable quality factor is not signifcantly changed by the immersion.

Fig. 2.
Fig. 2.

Temperature dependent tuning behaviour of resonant WGM modes in a liquid crystal immersed microdisk. (Black trace) Reference sample without liquid crystal. The shift is induced by the GaAs thermal lattice expansion. (Red trace) Liquid crystal immersed sample. As the temperature approaches the clearing point TC = 307.15 K, the resonant mode energy shifts strongly to higher energies.

Fig. 3.
Fig. 3.

(Upper part) μ-PL spectra of a microdisk immersed in liquid crystal with an electrical AC field applied perpendicular to the disk plane. (Lower part) Tuning behaviour of a resonant cavity mode as a function of the applied voltage.

Fig. 4.
Fig. 4.

FDTD simulation for different orientations of the liquid crystal molecules. The vertical axis describes the alignment of the molecules, where S = 1 corresponds to vertical alignment, S = 0 to an intermediate partially disordered state and S = -1 to parallel alignment in the disk plane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = ε 0 ε r = E = ε 0 · ( ε o 0 0 0 ε o 0 0 0 ε eo ) · E

Metrics