Abstract

We demonstrate a novel fiber-based in-line DPSK demodulator using an in-fiber Mach-Zehnder interferometer (MZI). The device is fabricated by mismatch splicing of a photonic crystal fiber (PCF) with standard single mode fibers. The spectral characteristics at different PCF lengths are analyzed. The envelope of the interference fringes show a period that is inversely proportional to the PCF length, and is attributed to the periodic coupling between the core mode and the cladding mode. Error free demodulations of 10-Gb/s RZ- and NRZ-DPSK signals have been demonstrated using the in-fiber PCF-MZI demodulator with only 3-m PCF to introduce 91-ps delay. Wideband DPSK demodulation has also been achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  2. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [CrossRef] [PubMed]
  3. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [CrossRef] [PubMed]
  4. Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33(24), 2934–2936 (2008).
    [CrossRef] [PubMed]
  5. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [CrossRef]
  6. Y. K. Lize, R. Gomma, and R. Kashyap, “Low-cost multimode fiber Mach Zehnder interferometer for differential phase demodulation,” v.6314, p.63140R.1–7, in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications XII, San Diego, USA, August (2006).
  7. C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
    [CrossRef]
  8. J. Du, Y. Dai, G. K. P. Lei, W. Tong, and C. Shu, “Demodulation of DPSK signals using in-line Mach-Zehnder interferometer based on photonic crystal fibers,” p.FM6, in the 14th Opto-Electronics and Communications Conference, Hong Kong, July (2009).
  9. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  10. C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
    [CrossRef]
  11. M. P. Fok and C. Shu, “Delay-asymmetric nonlinear loop mirror for DPSK demodulation,” Opt. Lett. 33(23), 2845–2847 (2008).
    [CrossRef] [PubMed]
  12. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
    [CrossRef] [PubMed]
  13. Y. K. Lizé, L. Christen, X. Wu, J. Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (4)

2006 (1)

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

2005 (2)

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

2004 (1)

2003 (1)

Alkeskjold, T. T.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

Choi, H. Y.

Chow, C. W.

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

Christen, L.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Fok, M. P.

Geng, Y.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Gnauck, A. H.

Hansen, T. P.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Jang, H. S.

Jeppesen, P.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Jung, Y.

Kashyap, R.

Kim, J. C.

Kim, M. J.

Koshiba, M.

Lee, B. H.

Lee, K. S.

Lee, S.

Lim, J. H.

Lizé, Y. K.

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Nuccio, S.

Oh, K.

Peucheret, C.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

Saitoh, K.

Sato, Y.

Shu, C.

Tsang, H. K.

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

Willner, A. E.

Winzer, P. J.

Wu, T.

Wu, X.

Yang, J. Y.

Zsigri, B.

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005).
[CrossRef]

C. Peucheret, Y. Geng, B. Zsigri, T. T. Alkeskjold, T. P. Hansen, and P. Jeppesen, “Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber,” IEEE Photon. Technol. Lett. 18(12), 1392–1394 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (3)

Other (2)

J. Du, Y. Dai, G. K. P. Lei, W. Tong, and C. Shu, “Demodulation of DPSK signals using in-line Mach-Zehnder interferometer based on photonic crystal fibers,” p.FM6, in the 14th Opto-Electronics and Communications Conference, Hong Kong, July (2009).

Y. K. Lize, R. Gomma, and R. Kashyap, “Low-cost multimode fiber Mach Zehnder interferometer for differential phase demodulation,” v.6314, p.63140R.1–7, in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications XII, San Diego, USA, August (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the PCF-MZI, (b) cross sectional structure of the PCF, and (c) typical transmission spectrum of the PCF-MZI.

Fig. 2
Fig. 2

Measured transmission spectra for PCF-MZIs with different PCF lengths: (a) 165.0 cm and (b) 82.3 cm.

Fig. 3
Fig. 3

Measured transmission spectrum of the 300-cm PCF-MZI

Fig. 4
Fig. 4

Measured spectra and eye diagrams of the demodulated 10-Gb/s RZ-DPSK signals at (a) 1547.094 and 1547.046 nm; (b) 1549.204 and 1549.155 nm; (c) 1551.318 and 1551.268 nm. The upper and lower plots show constructive and destructive interferences, respectively.

Fig. 6
Fig. 6

Bit-error rate performance on the demodulation of 10 Gb/s RZ- and NRZ-DPSK signals.

Fig. 5
Fig. 5

Measured spectra and eye diagrams of the demodulated 10-Gb/s NRZ-DPSK signals at (a) 1547.101 and 1547.148 nm; (b) 1549.078 and 1549.121 nm (c) 1551.241 and 1551.190 nm. The upper and lower plots show constructive and destructive interferences, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = I c o r e ( λ ) + I c l a d d i n g ( λ ) + 2 I c o r e ( λ ) I c l a d d i n g ( λ ) cos ( 2 π Δ n L / λ )
Δ n = n c o r e n c l a d d i n g = λ 2 π ( β c o r e β c l a d d i n g )
Δ λ = λ 2 ( n core n clading ) L = 2 π λ ( β c o r e β c l a d d i n g ) L
Δ t = L c / n core L c / n clading = λ 2 c Δ λ
D = Δ t L = Δ n c = λ 2 c L Δ λ
η ( λ )= ( 1 + ξ ( λ ) 1 ξ ( λ ) ) 2

Metrics