Abstract

The design of highly wavelength tunable semiconductor laser structures is presented. The system is based on a one dimensional photonic crystal cavity consisting of two patterned, doubly-clamped nanobeams, otherwise known as a “zipper” cavity. Zipper cavities are highly dispersive with respect to the gap between nanobeams in which extremely strong radiation pressure forces exist. Schemes for controlling the zipper cavity wavelength both optically and electrically are presented. Tuning ranges as high as 75 nm are achieved for a nominal design wavelength of λ = 1.3 μm. Sensitivity of the mechanically compliant laser structure to thermal noise is considered, and it is found that dynamic back-action of radiation pressure in the form of an optical or electrical spring can be used to stabilize the laser frequency. Fabrication of zipper cavity laser structures in GaAs material with embedded self-assembled InAs quantum dots is presented, along with measurements of photoluminescence spectroscopy of the zipper cavity modes.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Hard, "Laser wavelength selection and output coupling by a grating," Appl. Opt. 9, 1825-1830 (1970).
    [CrossRef]
  2. K. Liu and M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers," Opt. Express 6, 117-118 (1981).
  3. F. J. Duarte, Tunable Laser Applications, Second Edition. CRC, 2 ed. (2008).
  4. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers. New York, NY: Van Nostrand Reinhold, (1993).
  5. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007).
    [CrossRef]
  6. E. Bruce, "Tunable Lasers," IEEE Spectrum 39, 35-39 (2002).
    [CrossRef]
  7. A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007).
    [CrossRef]
  8. L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987).
    [CrossRef]
  9. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
    [CrossRef]
  10. M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
    [CrossRef]
  11. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006).
    [CrossRef]
  12. V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
    [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
    [CrossRef]
  14. M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
    [CrossRef]
  15. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, "Cooling and control of a cavity optoelectromechanical system," arXiv:0909.0082v3 [quant-ph], (2009).
  16. T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008).
    [CrossRef]
  17. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
    [CrossRef]
  18. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
    [CrossRef]
  19. R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009).
    [CrossRef]
  20. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
    [CrossRef]
  21. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
    [CrossRef]
  22. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
    [CrossRef]
  23. R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997).
    [CrossRef]
  24. J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
    [CrossRef]
  25. T. J. Kippenberg and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007).
    [CrossRef]
  26. V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, Quantum Measurement. Cambridge University Press, (1995).
  27. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef]
  28. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
    [CrossRef]
  29. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
    [CrossRef]
  30. P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994).
    [CrossRef]
  31. G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
    [CrossRef]
  32. R. E. Slusher, "Optical processes in microcavities," Semicond. Sci. Technol. 9, 2025-2030 (1994).
    [CrossRef]
  33. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, "Dynamically reconfigurable photonic crystal nanobeam cavities," arXiv:0909.2278, (2009).
  34. M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
    [CrossRef]
  35. G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
    [CrossRef]
  36. A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
    [CrossRef]
  37. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006).
    [CrossRef]
  38. J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
    [CrossRef]
  39. W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
    [CrossRef]
  40. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
    [CrossRef]
  41. H. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
    [CrossRef]

2009

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
[CrossRef]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009).
[CrossRef]

2008

T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008).
[CrossRef]

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
[CrossRef]

2007

K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007).
[CrossRef]

2006

2005

M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

2003

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

2002

E. Bruce, "Tunable Lasers," IEEE Spectrum 39, 35-39 (2002).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

2000

H. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

1998

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

1997

R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

1996

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

1994

P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef]

R. E. Slusher, "Optical processes in microcavities," Semicond. Sci. Technol. 9, 2025-2030 (1994).
[CrossRef]

1992

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

1987

L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987).
[CrossRef]

1983

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

1981

1970

Adesida, I.

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

Aellen, T.

Agarwala, S.

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

Alegre, T. P. M.

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

Arahira, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Baillargeon, J.

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

Beck, M.

Behroozi, P.

Belkin, M. A.

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Borselli, M.

Bruce, E.

E. Bruce, "Tunable Lasers," IEEE Spectrum 39, 35-39 (2002).
[CrossRef]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
[CrossRef]

Camacho, R. M.

Capasso, F.

Carmichael, H. J.

P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef]

Chan, J.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
[CrossRef]

Cho, A. Y.

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

Chu, S. N. G.

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

Coldren, L.

L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987).
[CrossRef]

Colombelli, R.

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

Corzine, S.

L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987).
[CrossRef]

Day, P. K.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

Diehl, L.

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
[CrossRef]

Elwenspoek, M.

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

Faist, J.

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Gray, A. L.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

Hakonen, P. J.

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Hard, T. M.

Haus, H.

H. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

Hill, M. T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Hofstetter, D.

Howe, R. T.

R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
[CrossRef]

Hwang, W.-Y.

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Jansen, H.

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Johnson, S. G.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007).
[CrossRef]

Kitamura, M.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Kobayashi, K.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Koker, T.

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

Krishna, S.

Krysa, A. B.

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

Kutsuzawa, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

LeDuc, H. G.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

Lee, B. G.

Lee, M.-C. M.

M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Legtenberg, R.

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

Lester, L. F.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

Li, H.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Littman, M. G.

Liu, A. Q.

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007).
[CrossRef]

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

Liu, K.

Loncar, M.

Maboudian, R.

R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997).
[CrossRef]

Malloy, K. J.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

Matsui, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Matsuoka, T.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Mazin, B. A.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

Mito, I.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Moreau, V.

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

Muhonen, J.

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Murai, H.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Newell, T. C.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Ogawa, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Otten, F. W. M. V.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
[CrossRef]

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007).
[CrossRef]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006).
[CrossRef]

Perahia, R.

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

Rice, P. R.

P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef]

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Safavi-Naeini, A. H.

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

Sarkar, J.

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Sciortino, P. F.

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

Seki, M.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Seo, J.W.

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

Sillanpaa, M. A.

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Slusher, R. E.

R. E. Slusher, "Optical processes in microcavities," Semicond. Sci. Technol. 9, 2025-2030 (1994).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Sonnenberg, T.

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

Srinivasan, K.

K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007).
[CrossRef]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006).
[CrossRef]

Stintz, A.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

Sulkko, J.

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Tas, N.

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007).
[CrossRef]

Varangis, P. M.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

Vayonakis, A.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

Veldhoven, P. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Vries, T. D.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Waardt, H. D.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Wilson, L. R.

V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008).
[CrossRef]

Wu, M. C.

M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

Yamaguchi, M.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Zhang, X. M.

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
[CrossRef]

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Zmuidzinas, J.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992).
[CrossRef]

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009).
[CrossRef]

Electron. Lett.

M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983).
[CrossRef]

IEEE J. Quantum Electron.

L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987).
[CrossRef]

IEEE J. Quantum. Electron.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000).
[CrossRef]

M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997).
[CrossRef]

IEEE Spectrum

E. Bruce, "Tunable Lasers," IEEE Spectrum 39, 35-39 (2002).
[CrossRef]

J. Micromech. Microeng.

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007).
[CrossRef]

N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996).
[CrossRef]

J. Vac. S. Tech. B

W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998).
[CrossRef]

J. Vac. Sci. Technol. B

R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997).
[CrossRef]

Nature

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003).
[CrossRef]

K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009).
[CrossRef]

Nature Photon.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef]

Phys. Rev. E

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002).
[CrossRef]

Phys. Rev. Lett.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef]

Science

T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008).
[CrossRef]

Semicond. Sci. Technol.

R. E. Slusher, "Optical processes in microcavities," Semicond. Sci. Technol. 9, 2025-2030 (1994).
[CrossRef]

Other

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, "Dynamically reconfigurable photonic crystal nanobeam cavities," arXiv:0909.2278, (2009).

V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, Quantum Measurement. Cambridge University Press, (1995).

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, "Cooling and control of a cavity optoelectromechanical system," arXiv:0909.0082v3 [quant-ph], (2009).

F. J. Duarte, Tunable Laser Applications, Second Edition. CRC, 2 ed. (2008).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers. New York, NY: Van Nostrand Reinhold, (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics